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Preface

Statistics 1s primarily a way of making decisions in the face of variability and
uncertainty. Often some new treatment is first tried on a few individuals and
there seems to be some improvement. We want to decide whether we should
believe the improvement is “for real” or just the result of chance variation.
The treatment may be some actual medical treatment, or it may be the applica-
tion of a new fertilizer to a crop or an assessment of the effect of particular
social circumstances on social outcomes. In many professional areas people
want to answer the same basic question: “Does this make a real difference?”
In the modern world this question is answered by statistics.

Statistics is therefore part of the training course for people in a wide range
of professions. Sadly, though, statistics remains a bit of a mystery to most
students and even to some of their statistics teachers. Formulas and rules are
learned that lead to an answer to the question, “Does this make a genuine
difference?” in various situations. However, when people actually come to
apply statistics in real life they are generally uneasy. They may be uneasy not
only because they have forgotten which formula to apply in which situation or
which button to press on the computer, but also because the formula or the
computer is using criteria that they never properly understood to make impor-
tant decisions that sometimes don’t accord with common sense. People in this
situation are right to be uneasy. Statistics applied correctly but without full
understanding can lead to the most inappropriate, even bizarre decisions. Com-
mon sense without any assistance from statistical analysis will often lead to
more sensible decisions. Nevertheless, statistics has conquered the world of
modern decision making. Few people notice that many statisticians don’t be-
lieve in statistics as it is currently practiced. Statistics can of course be used
wisely, but this depends on the user properly understanding the meaning of
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the answers from the formula or the computer and understanding how to com-
bine these answers with common sense.

This book is primarily aimed at people who learned statistics at some stage,
never properly understood it, and now need to use it wisely in everyday pro-
fessional life. However, the book should be equally suitable as an introductory
text for students learning statistics for the first time. There is a large number of
introductory statistics texts. This text stands out in three ways:

It emphasizes understanding, not formulas.
* It emphasizes the incorporation of common sense into decision making.

« It gives the full mathematical derivation of some statistical tests to enhance under-
standing.

The last point requires an immediate qualification to prevent the large num-
ber of people with mathematics phobia from shutting the book for good at this
point. No mathematical background beyond grade 10 is assumed, and the
mathematics often consists of simply explaining one logical idea. Because
formulas that can’t be fully understood by someone with grade 10 mathemat-
ics are omitted, there is less mathematics than in most statistics texts.

The aim is to show the limited connection between wise decision making
and statistics as it is conventionally practiced, and to show how this situation
can be rectified by combining statistics with common sense.
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Glossaries

MATHEMATICAL SYMBOLS

less than

Iess than or equal to

greater than

greater than or equal to

does not equal

approximately equals

is

or (meaning one or the other or both)
and

given

n factorial, meaning n x (n— 1) x (n - 2) x ... x 3 x 2 x |; for example,

P =4x3Ix2x|=24

Number of ways that from n objects k objects can be chosen (from n
Choose k)

n! _
T kMn—ky

i
k

for example,

Sx4x3x2x1 0
_(3><2><l)><(2><1)_

5
3

(see Chapter 3).
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COMMON ENGLISH EXPRESSIONS USED IN THE
TEXT TO IMPROVE READABILITY

The expressions here on the left-hand side are not normally intended to be
used in an absolutely precise way. However, in certain contexts in this book they
are used in place of precise quantitative expressions to improve readability. The
precise meanings that I attach to these expressions are given on the right.

“hardly ever” with probability = 0.05
“nearly always” with probability = 0.95
“quite often” or “commonly” with probability > 0.05



Statistical Computer Program

Many people frequently come across questionable decisions made on the ba-
sts of statistical evidence. This book will help them to make their own in-
formed judgment about evidence based on statistical analyses. Only some
people will need to undertake statistical analyses themselves. On the other
hand, it is just a small step from understanding statistical evidence to being
able to undertake statistical analyses in many situations. It is a small step be-
cause in most cases the actual calculations are performed by a computer. The
only additional skill to be learned in order for readers to perform statistical
analyses for themselves is to learn which button on the computer to press.
Doing helps learning, so this book includes questions, some of which are in-
tended to be answered with the assistance of a statistical computer program.

There are many statistical computer programs or “packages” available. Al-
most all would be capable of the calculations covered in this book. However,
none are ideal. Many are unnecessarily complex for use in straightforward
situations. The complexity, profusion of options, and graphical output may
serve to confuse and distract users interested only in straightforward situa-
tions. Many contain errors in that they use easy-to-program, approximate
methods when exact methods are more appropriate. Some contain other er-
rors. Few programs are available free of charge, even though most of the intel-
lectual effort underpining such programs is ultimately a product of publicly
funded universities in which academics have worked for the public good.

In response to these issues, I have written a statistical program to accom-
pany this book. I have called the program “pds” for Public Domain Statistics.
It is designed to run on the Windows operating system (version 95 or later),
and occupies about 1 Mb. It is available for distribution free of charge with the
proviso that it is not to be used against the interests of humanity and the envi-
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ronment. It is available on the World Wide Web at <http://www jcu.edu.au/
school/mathphys/mathstats/staff/DAKault.html>. It can also be obtained by
personal request from the author at the Department of Mathematics & Statis-
tics, James Cook University, Townsville, Qld 4811, Australia (please send the
cost of postage and floppy disc). Source code can be made available to pro-
grammers who guarantee that extensions to this work remain within the pub-
lic domain.

This book contains references to pds and brief instructions on its use, but
the book can be used in conjunction with any other statistical computer pro-
gram. Indeed, lack of access to a computer would be only a minimal handicap
in using this book to gain an understanding of statistics.
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CHAPTER |

Statistics: The Science of Dealing
with Variability and Uncertainty

Statistics can be defined as the science of dealing with variability and uncer-
tainty. Almost all measurements made by scientists and people in many other
fields are uncertain in some way. In particular, most measurement devices
have limited accuracy, so there is uncertainty about the exact value. Some-
times what is being measured varies from individual to individual and from
time to time, making it impossible to measure the true average exactly. For
example, it is impossible to know exactly the true average blood pressure of
the average healthy person.

Often we have to make a decision against a background of variability. We
might be interested in a new blood pressure treatment. Should we believe that
the new treatment works better than the standard treatment? The figures we
collect after trying out the new treatment and comparing it with the standard
treatment may slightly favor the new treatment. However, there is so much
variability in blood pressure from person to person and from day to day that it
will often be difficult to know whether it would be more reasonable to put
slight changes in the average down to the effects of variability rather than to
believe that the new treatment was superior to existing treatments.

THE QUEST FOR “OBJECTIVE” METHODS
OF DEALING WITH UNCERTAINTY

By the early years of the twentieth century, the achievements of science had
captured the public’s imagination. There was a widespread desire to apply
some scientific method to many areas of knowledge, to measure things, and to
be “scientific” in how the measurements were interpreted. It no longer seemed
good enough to simply look at a crop of wheat and note that on the side of the
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field treated with Bloggs’s fertilizer the wheat grew better than on the side
treated with Jones’s fertilizer and conclude that Bloggs makes better fertilizer
than Jones. Maybe on Bloggs’s side of the field the soil was better to start with.
More measurements were needed and these measurements had to be analyzed
“scientifically.” There was a need for a scientific approach to making decisions
that took account of the variable nature of many types of measurements.

One important ingredient in the scientific approach seemed to be objectiv-
ity: Scientists were seen as using calculated reason based on hard facts. Mak-
ing decisions based on guesswork and intuition did not seem to be part of the
scientific method. There was therefore pressure to invent an objective method
of drawing conclusions from uncertain or variable information. A method was
wanted that did not depend on intuition. As a result, a method of objective
decision making on the basis of variable data was developed early in the twen-
tieth century and is widely used today. This method is properly called frequentist
statistics. Other mathematically based methods of making decisions in the
face of uncertainty were also developed and come under the heading statistics,
but since these other methods are not objective and are often more difficult,
they are not as well known. Frequentist statistics is so popular and so widely
used that most people don’t even realize that it is just one of a number of
different varieties of statistics. For most people, frequentist statistics is “statis-
tics.” This book, too, will usually just use the word “statistics” in place of the
mouthful “frequentist statistics.”

“OBJECTIVITY”: A MISTAKEN GOAL

Unfortunately, the pressure for an objective method of dealing with data
was misguided. Most statisticians believe that the best ways of drawing con-
clusions in the presence of uncertainty involve methods that are not entirely
objective. To give the appearance of objectivity, frequentist statistics starts
with the premise that all decision making should flow from an analysis of the
measurements that have been made. This approach has the added virtue that a
computer program can be used to entirely automate the process of decision
making. But this is often a ridiculous approach. We almost always know more
about the topic than just the measurements, and surely it is silly to entirely
ignore this knowledge in the decision-making process. Statistics, as currently
used by most nonstatisticians, is the product of a mistaken quest for objectiv-
ity and simplicity.

STATISTICAL IMPERIALISM

Nevertheless, statistics has become the approach that the modern world takes
to analyzing figures. Anybody who has to deal with making decisions on the
basis of figures who simply looks at the figures rather than “get stats done on
them,” whether they be a researcher or an administrator, would be regarded as
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inadequate in their job and unable to cope with the intelligent, modern ap-
proach. Statistics has conquered the world of decision making. There is an
almost religious belief that the modern world knows how to approach all prob-
lems and that “stats” is part of this approach. Nobody seems to notice that
statisticians don’t share this unthinking faith in statistics. Statisticians see some
value in frequentist statistics, but many believe that it is not reasonable to try
to deal with measurements involving uncertainty or variability in an entirely
objective way. To base all analyses on figures alone means to abandon com-
mon sense, and often common sense can bring more wisdom to a subject than
a blind analysis of figures. As a result of ignoring common sense, a consider-
able part of the world’s scientific output is wasted effort. Analysis of experi-
ments without the benefit of common sense can lead to misleading and
sometimes dangerous conclusions. The use of common sense shows that many
experiments should not have been performed in the first place.

A FIRST EXAMPLE OF THE CLASH BETWEEN
STATISTICS AND COMMON SENSE

Let us look at an example where no great issues are at stake. We will con-
sider two small groups of piano students. Say that in the first group the stu-
dents got a half-hour lesson per week and in the second group the students got
an hour lesson per week. Now assume that the results of the students in their
piano exams showed that there was a lot of individual variation in ability but
that the students who got the extra tuition time averaged out about 2 percent
above the students who didn’t. A normal person who had not had the “benefit”
of a statistics “education” would conclude that the extra tuition time helped,
but perhaps only a little. They might also think that perhaps the benetit may
have been a bit underestimated due to a fault in the experiment; perhaps the
experiment should have involved more students. By using common sense, the
untrained person would come to appropriate conclusions.

On the other hand, someone who had been through a course in statistics as
it is commonly taught would type the exam marks for both groups into a com-
puter. A figure would come out of the computer. On the basis of this figure
such a person would be likely to conclude that “there is no evidence of any
benefit from the half hour extra tuition,” or even worse, “statistical tests have
proven that extra tuition is of no benefit.” What the computer actually would
have told them would be that “looking at the figures alone, the small differ-
ence of 2 percent between the groups could reasonably be attributed to indi-
vidual variability causing the average of the second group to be a little higher
just by chance.” However, it is silly to look at the figures alone. We know that
very few students will pass an exam with no tuition. Some tuition enables
many students to pass. It seems reasonable to believe that additional tuition
may enable many students to do even better. In other words, common sense
tells us that, on average, extra tuition will almost certainly help students. Com-
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mon sense here would lead to far better decision making than blind applica-
tion of frequentist statistics.

THE LOGIC USED IN STATISTICS

Frequentist statistics can be valuable in decision making, provided it is not
applied blindly. To apply statistics wisely requires an understanding of the
rather convoluted logic that underlies frequentist statistics. It is the purpose of
this book to show how statistics can be combined with common sense. The
logic and philosophy of frequentist statistics are therefore tully explained in
the next few paragraphs so that statistics can be used with common sense to
make sensible decisions. Just a few minutes of concentration may be required
for understanding. However, since the ideas can be awkward to follow, the
explanation is repeated in the context of various examples throughout the book.

Let us look again at the example of the piano students receiving half an
hour versus an hour of tuition per week. Although common sense tells us that
the extra half hour of tuition will nearly certainly be of some help, the actual
amount of benefit of 2 percent in exam marks in our figures turned out to be
quite small. It is still just possible that students get all the tuition that they can
absorb in one half-hour lesson each week, with the extra lesson being useless.
If the extra tuition was in fact entirely useless, we could still account for the
extra 2 percent marks in the extra tuition group by arguing that it was due to
individual variability and that it was just coincidence that this variability turned
out to favor the extra tuition group. In other words, it is just possible that the
extra tuition was useless, but by sheer random chance there happened to be
rather better students in the extra tuition group who got better marks, not be-
cause of the extra half hour, but because they were better students. It is there-
fore just possible that we are looking at a chance result that makes it appear
that the extra tuition helps when in fact it does not.

Let us look at how a computer could help us here. Ideally, we would want to
ask the computer, “What is the chance that the difference in the two groups of
student pianists is not due to the benefit of the extra tuition but is instead due
to individual variability just happening to favor the students in the group that
got the extra tuition?”” More generally, we often want to ask, “Is it reasonable
to blame chance for the difference?” Any reasonable answer to such questions
needs to take into account both the figures we obtain in our experiment and
our common sense judgments. In the case of piano tuition, common sense
tells us that it is exceedingly likely that the extra tuition will be of benefit.
However, the computer can’t take account of our common sense judgments
since we are only telling it about the figures. Therefore, the computer can’t
answer the question, “Is it reasonable to blame chance for the difference?”
Instead, it answers a related secondary question: “If the differences between
two groups were entirely due to natural variability alone, how often would it
turn out that the two groups end up at least as different as these two groups
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are?” Expressed another way, we want to ask, “Are the differences real or are
they just due to coincidence?” Instead of answering that question we get a
reply to the question, “If we were to put the differences down to sheer coinci-
dence, what sort of coincidence would we be dealing with?”

The situation here can be compared with the situation of a biologist study-
ing mammals on an island. The biologist may already know that there are cats
on the island, but she may be interested in whether there are different mam-
mals as well. Say the biologist came across some yellow fur. The biologist
will want to ask, “This animal has yellow fur. Does this mean that there are
different mammals here and not just cats?” In the analogy with the questions
asked and the answers given by statistics, the biologist would receive an an-
swer to the secondary question, “Do cats often have yellow fur?”

Question we want answered Question actually answered

This has yellow fur, so is it a different Do cats often have yellow fur?
mammal or is it just a cat?

There is a sizeable difference between Does chance alone often lead to differ-
the two groups, so is there a real ences between two groups at least as
difference or is it just due to chance? large as the differences we see here?

Let us say that in the case of the exam results of the student pianists we got
the reply from the computer, ““Chance alone could often lead to a difference of
2 percent or more between the average of the two groups.” From this, if we
were just looking at the figures and ignoring any background knowledge or
common sense, we could say, “The figures themselves give no convincing
evidence of any benefit from the half hour extra tuition.” However, it is tradi-
tional in frequentist statistics to leave out the important qualifiers “the figures
themselves” and “convincing” from this sentence and instead state, “There is
no evidence of any benefit from the half hour extra tuition.” Even worse, this
misteading form of words is sometimes further distorted to become “statisti-
cal tests have proven that extra tuition is of no benefit.” However, as discussed,
even if chance could easily account for the difference in the marks, it does not
accord with common sense to say that we have proven that we should blame
chance for the ditference in the marks of the two groups of students.

Now let’s say we got the opposite message from the computer: “Chance
alone would hardly ever lead to such a big difference between the two groups.” It
is then traditional in frequentist statistics to make the decision that there is a real
difference in the progress of the two groups of student pianists. What is meant by
“hardly ever”? The actual result given by the computer is a probability. Tradition-
ally, “hardly ever” is taken to mean less often than one in twenty times. The
synonyms “p value less than 0.05,” “statistically significant at the 0.05 level,”
“significant at the 0.05 level,” or “statistically significant” are often used. If
this happened in the case of the student pianists, we would be happy to agree
with the conclusions reached by someone following the tradition of frequentist
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statistics. In other words, both common sense and frequentist statistics would
tell us that we should believe that the extra tuition is of some benefit.

We have seen in the case of the student pianists an example where stats
could tell us we shouldn’t believe something makes a difference when com-
mon sense tells us that it does. There are cases where “stats” tells us that we
should believe that something makes a difference, but common sense tells us
that it doesn’t. In such cases we make the judgment that chance, even a rather
tiny chance, is a more reasonable explanation for the differences than the ex-
planation that there is a real underlying difference. For example, let’s say a
friend claimed to be a clairvoyant. You tested her powers by seeing if she
could guess some number between 1 and 100 that you had written on a piece
of paper. If she happened to get the correct number and you were an unthink-
ing frequentist statistician, you would now believe that your friend is a clair-
voyant. Why? Because chance alone would hardly ever allow her to get the
correct number. Here, the chance involved would be | chance in 100, or p =0.01.
Since this is less than a one-in-twenty chance, it is the sort of chance that hardly
ever occurs, and so following the strict traditions of frequentist statistics we would
say that there is statistically significant evidence that your friend is a clairvoyant.
However, most people are at least a bit skeptical about clairvoyants, or at least
won’t readily believe that their friends are clairvoyants, and so most people
would not be convinced by one correct guess out of 100 numbers. For these
people, following the traditions of frequentist statistics would lead to a con-
clusion that they felt was not supported by the evidence. Some skeptics might
want to see your friend correctly choose a nine-digit number—chance alone
would allow a correct guess only once in a billion times—before they might
start to believe that genuine powers of clairvoyance is a better explanation
than chance. For such skeptics in this situation, the p value that is just tiny
enough to make them change their minds would be one in a billion or p =
'\ ooooooooe- Here it would be inappropriate for skeptics to use the traditional
value p = 0.05 as the benchmark for the sort of chance that is unreasonably
small. Instead, such skeptics should use p = 0.000000001 as the benchmark.

Restating, when we see a difference between two groups we might want to
ask, “Could the difference just be due to coincidence?” Statistics does not
answer this question, but instead answers the related question, “If we were to
put the differences down to coincidence, what sort of coincidence would we
be talking about?” The answer to this second question is the p value. If the p
value is unreasonably small, smaller than some arbitrary benchmark (the co-
incidence is highly unlikely), it is more reasonable to believe the difference is
“for real.” There is a tradition of using a fixed value of 0.05 as the benchmark
for what is unreasonably small. However, if this tradition is blindly accepted
and the benchmark is not adopted to suit circumstances and common sense,
“stats” can lead to unreasonable, even bizarre, decisions.

This section on the logic used in statistics requires some thought. The logic
is a bit twisted and difficult. However, the ideas just explained are the main
ideas underlying introductory statistics. If you understand these ideas, you
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have understood most of a first course in statistics. Because of its importance,
the explanation will be repeated in various contexts throughout this book.

THE ROLE OF MATHEMATICS

In this book the understanding of statistics is enhanced by giving the com-
plete mathematical basis for a few statistical tests. However, mathematical
knowledge beyond the tenth-grade level is not assumed. Many statistical tests
are derived using quite complex mathematics and involve a complex series of
calculations. Other texts go to some length to detail all the mathematical ma-
nipulations that are required for these statistical tests. The attitude taken here
is that if it is not possible to understand the mathematical derivation of the test,
and if the details of the calculation don’t help you to understand how the test
works, then there is absolutely no point in learning the steps used in the calcu-
lations. Computers are now available to do these calculations. (A computer
program called pds [public domain statistics] was written to accompany this
book and is available free of charge for nonprofit purposes from <http://
www._jcu.edu.au/school/mathphys/mathstats/staff/DAKault.html>.) The impor-
tant issue is to understand the philosophy and assumptions behind the test.
Therefore, it the details of the calculations are not enlightening in some way
they are entirely omitted. As a result, there is less emphasis on calculation and
formulas in this text than in most other introductory statistics books.

On the other hand, there are a few statistical tests for which the full deriva-
tion can be understood by anyone who can understand tenth-grade mathemat-
ics. These tests are explained in detail to enhance understanding of the nature
of statistics.

THE REMAINDER OF THE BOOK

Before we return to the harder parts of statistics—using statistics to make
decisions about whether we should believe that there are underlying differ-
ences between groups—we will briefly cover the easiest parts of statistics.
Recall the definition of statistics: the science of dealing with variability and
uncertainty. The first part of dealing with variability and uncertainty is to de-
scribe it. The part of statistics that deals simply with description is covered
next. People who have any knowledge of statistics could just skim this chap-
ter. The book then gives a simple introduction to the mathematics of chance:
probability theory. This is necessary in order to understand some of the statis-
tical tests that are described in full and in order to give you a feeling for situa-
tions that can reasonably be blamed on chance. The study of using statistics to
make decisions occupies the remainder of the book.

In some places, interesting details and derivations are given that are not
essential for people who just want the main ideas. Material such as this, which
is redundant to the reader who does not want to cope with additional complex-
ity, can be skipped without losing the main ideas of the book. Parts of the text
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containing such information are headed “Optional” and set between rules. In
some places, these optional sections contain additional examples.

Answers to the questions at the ends ot the chapters are given at the end of
the book, beginning on page 241.

SUMMARY

* Statistics is a way of making a decision about whether differences are “for real” or
just a result of chance.

 The form of statistics in common use attempts to be entirely objective and so just
looks at the figures available and entirely ignores any common sense knowledge of
the area.

* As a result, statistics cannot directly answer the question, “Is there a real differ-
ence?” Instead, it answers an indirectly related question: “If we were to blame
coincidence for the difference, what sort of coincidence would we be talking about?”
The answer to this question is called the p value. If the p value is smaller than some
benchmark, the coincidence is regarded as unreasonably long and we conclude that
there is a real difference.

« Traditionally, the benchmark p value is taken to be 0.05.

¢ Blind adherence to this traditional benchmark can lead to unreasonable decisions
that defy common sense.

Put simply, the p value tells us how easy it is for chance alone to explain differ-
ences. It does not tell us how likely it is for chance to be the true explanation.

QUESTIONS

1. Think of another situation, like the music students and the extra tuition example,
where you would believe that the benefits were “for real” regardless of results
from a statistical analysis telling you that the favorable results could be easily
explained by chance.

2. The roulette wheel in a casino can stop in thirty-eight different positions. The
casino is known to operate the roulette wheel fairly. You notice that the roulette
wheel hasn’t stopped on “36” even once in the last 500 goes, so you place a bet on
“36.” What is the chance that you will lose your money?

3. Imagine your neighbor claimed to be a clairvoyant and asked you to verify her
powers by getting you to write down a number between | and n (where n stands
for a number like 10, 20, 100, or 500) that she then correctly guessed. How big
would 7 have to be in order to convince you (assuming you can rule out cheating
or magic tricks)?

4. Consider the same scenario as in question 3, but this time you are going to get the
self-declared clairvoyant to perform the number guessing twice in a row and you
will believe in her powers only if she is correct both times. Again, how big would
n have to be in order to convince you (assuming you can rule out cheating or
magic tricks)?



CHAPTER 2

Descriptive Statistics

NUMBER AND TYPE OF MEASUREMENTS

Generally, our first step in dealing with a situation in which uncertainty or
variability plays a role is to make some measurements. The first question is
how many measurements should we make. We could measure all the individu-
als in which we were interested, an appreciable proportion of them, or a neg-
ligible proportion of them.

Ideally, we would accurately measure all the individuals. This is called a
census. Statistics would then just consist of describing the results in a digest-
ible manner. Most times a census is not possible. Often the number of indi-
viduals we would need to measure is so large that it would not be possible to
conduct a census with limited time and resources. For example, if we wanted
to make a statement about the height of women that would always be correct
we would have to measure all the women that have ever existed or that could
ever exist in the future. Obviously, this is not possible.

When it is not feasible to measure all the individuals in which we are inter-
ested, we measure a selection of them. Usually the selection is a small or
infinitesimal fraction of the number of individuals in which we are interested.
In the case of women’s heights, we would measure a small selection of women.
The statistical term used here is that we take a “sample” from the population.
The word “population” is used to describe the collection of all the objects we
could measure, even when we are considering nonliving objects (e.g., the popu-
lation of all possible midday temperatures). There are pitfalls in taking a sample.
If we wanted to know about people’s weights and we set up a weight-measuring
facility outside the door of the Weight-Watchers Association, our sample of
weights would obviously not fairly represent the weights in the population.
For a sample to be fair. each member of the population has to have an equal
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chance of being chosen. A sample chosen this way is said to be a representa-
tive sample. A weight-measuring facility outside the door of the Weight-Watchers
Association would not be representative because overweight people would
have a greater than average chance of being chosen. There are many more
subtle ways of obtaining a sample that is not representative of the population.
Both the theory and the practicalities of obtaining representative samples are
large areas of study in their own right. However, in most of what follows we
will simply assume that we have obtained a representative sample. Much of
statistics consists of calculations about how accurate information about a popu-
lation is going to be when this information comes from a representative sample.

Occasionally the sample may consist of an appreciable proportion of the
population, as in an opinion poll for the election of a mayor in a small town.
Such an opinion poll might sample a quarter of the people who can vote. As
well as simply representing the opinions in the whole population, this sample
would also give us certain knowledge about an appreciable proportion of the
population. As discussed in Chapter 10, some modifications to statistical cal-
culations are then required. However, in most of what follows we will assume
that our sample is a negligible fraction of the population and that it gives us
ideas about the population in a probabilistic way.

For simplicity, instead of listing all the measurements in our sample we
often want to describe them more briefly or express them in some summary
form. The description or summary form can be in terms of summary numbers
such as averages, or it can be in the form of diagrams. The type of summary
that is used will depend partly on the type of measurements or data.

TYPES OF DATA

Measurements (the words “data” or “information™ can be used interchange-
ably here) can be of three basic types: continuous, discrete, and categorical.
Ordinal is a further type which is here described as a subtype of categorical
data.

Continuous Data

In the case of continuous data the thing that is being measured can vary
continuously. An example is the measurement of height. In practice, height
measurements are often rounded to the nearest centimeter or millimeter, but it
is possible for somebody to be, for example, anywhere between 172.3 cm and
172.4 ¢cm in height. If we could use an infinite number of decimal places in
measuring height, there would be an infinite number of heights distributed
continuously between 172.3 and 172.4. Other examples of continuous mea-
surement are weight, temperature, and ozone concentration. In the case of
each of these measurements, the size of the step between one measurement
and the next biggest measurement can be arbitrarily small. so there need be no
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cutoff in size between one measurement and the next. Since the size of the
ditferent measurements are not necessarily cut off from each other by any
fixed amount, we regard the measurements as continuous data.

Discrete Data

In the case of discrete data, the measurement has to fall on separated (or
discrete) values. Discrete measurements almost always arise from counting.
An example is the number of accidents the clients of an insurance company
have in one year. For any client the measurement can be O or | or 2 or 3 and so
on. These numbers are discrete in that they are separated by whole units from
each other. It would make no sense to have the number 1.3 as the number of
accidents a client had. A second example of a discrete measurement is the
number of children in a family, since children also come in whole numbers:
Having 1 child or 2 children in a family makes sense, but no family contains
1.3 children.

Categorical and Ordinal Data

Data can also be categorical. This means that our measurement consists of
simply classifying the object into one of several categories. An example is
classitying people by their religion. Here our measurement is simply the clas-
sification of each individual as Christian, Buddhist, Moslem, and so on. A
second example of a categorical measurement is to record the species of plants
in a field. When there is only two categories possible, categorical data is some-
times called dichotomous data. Examples of pairs of dichotomous categories
are yes—no, better—worse, and alive—dead.

There is another variant of categorical measurement. Categorical measure-
ments are referred to as ordinal if the categories can be sensibly ordered. The
different religions can’t be ordered (except perhaps to some religious bigot it
would not make sense to put Hinduism above or below Buddhism), so reli-
gion is not ordinal data. However, cancer patients can be ordered into those
with stage [ cancer, who have good survival prospects. and those with stage I1,
I1, or I'V, who have progressively poorer prospects. However, someone with
stage 11 1s not twice as badly off as a person with stage [ or half as badly off as
someone with stage I'V. The numbers I, I1, III, and IV make sense as an order-
ing, but not as numerical measure. This is the key feature of ordinal data. A
second example of an ordinal measurement would be the classification of people
into nonsmokers, light smokers, and heavy smokers. Smoking increases the
risk of many diseases. Nonsmokers have less risk of these diseases than light
smokers, and light smokers have less risk than heavy smokers, but it generally
is not true that the risk for light smokers is halfway between the risk for non-
smokers and the risk for heavy smokers. The ordering nonsmoker, light smoker,
heavy smoker is therefore useful, but it would not be useful to think of this
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ordering in the same way as we think of the numbers 1, 2, and 3, with 2 being
exactly halfway between | and 3. A third example could be the classification
of the age of animals as juvenile, immature, adult, or senescent.

Most writers regard ordinal data as a separate type from categorical data, so
the common classification of data types are continuous, discrete, ordinal, and
categorical. How data are classified also depends on our viewpoint. If we look
at plants in a field one by one and decide which species each one belongs to,
we are dealing with categorical data. It we look at the total number of plants
of a particular species in the field, we can regard that number as one item of
discrete data.

As well as classifying data as continuous, discrete, ordinal, or categorical,
data can also be classified according to how many measurements are made on
each individual. Where one measurement is made on each individual, the data
are called univariate. If two measurements are made on each individual, the
data are bivariate. Where more measurements are made on each individual,
the data are multivariate. If we were just interested in height and measured the
height of a number of people, we would have univariate data. If we were
interested in describing the connection between height and weight and mea-
sured these two quantities on each of a number of individuals, we would have
bivariate data. If we were interested in the connection between students’ exam
results and their home situation we might measure not only each student’s
exam results but also his or her parents’ income, parents’ educational achieve-
ments, number of siblings, number of hours of TV watched each night, and so
on. This would be multivariate data.

SUMMARIZING CATEGORICAL AND ORDINAL DATA
WITH NUMBERS AND DIAGRAMS

To summarize categorical and ordinal data with numbers we simply give a
table listing the totals in each category. Such data can also be summarized
with diagrams. Two sorts of diagrams are used: bar graphs and pie charts.
These are just the names for the diagrams that many people will have seen in
newspapers and elsewhere. As an example, say we picked out 100 adults at
random and classified each person according to whether they were in the cat-
egory “‘single,” “married,” “widowed,” or “separated” or divorced.” If the num-
bers in the various categories were 15, 45, 10, and 30, respectively, the
table-form summary would be as follows:

33 4

single married | widowed | separated/
divorced
15 45 10 30 }

The diagrammatic summary would be given by the following bar graph or
pie chart. In the bar graph, the height of the bars gives the number in each
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category. In the pie chart, the percentage of people in each group is mirrored
by the size of each “slice” as a percentage of the entire “pie’:
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Exactly the same methods of display apply to ordinal data. If the figures 15,
45, 10, and 30 referred instead to the number of people with stage I, 11, 11, and
IV cancer, replacement of the labels single, married, widowed, and sep/div by
I, II, 1L, and TV is all that is needed. However, people concerned that diagrams
should obey a strictly logical layout would prefer a bar graph rather than a pie
chart representation for ordinal data. In a bar graph the bars could represent
people with stage I, 11, 111, and IV cancer in that order; whereas in a pie chart,
stage IV cancer would be displayed as lying between stage 11l and stage I, not
a logical position for it to be in.
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SUMMARIZING DISCRETE AND
CONTINUOUS DATA WITH NUMBERS

The most obvious method of summarizing a list of measurements of height
or weight or whatever is to calculate the average. Why then the need for more
discussion? There are two answers. First, taking the average is not the only
method of describing where the data are centered. There are other methods of
describing where the data are centered that in some circumstances give more
insight than just quoting the average. Second, in addition to a summary mea-
surement telling us where the data are centered, we may want a measure of
how spread out the data are. Summary measures of where data are centered
and how spread out data are are known as summary statistics.

Where Are the Data Centered?

There are three measures of where data are centered (otherwise referred to
as measurements of central tendency). These are the mean, median, and mode.

The Mean

The mean is simply a fancy term for average as learned in primary school.
Simply add up all the values and divide by the number of values. For example,
the mean of 11, 10, and 21 is

11+ 10+ 21
3 .

14 =
The mean of a sample, or sample mean, is often given the symbol x.

OPTIONAL

It is useful to write rules, such as the rule for finding the mean, in a way that
does not depend on examples. However, this requires getting used to a bit of
mathematical jargon. To spell out the rule for finding the mean using the cor-
rect mathematical jargon, we have to replace the numbers in the example with
symbols. For the first data value we use the symbol x,, for the second x,, for
the third x,. In our example, x, = 11, x, = 10, x;=21. If there were more values,
we would have an x, x;, and so on. If there were n values, our last value would
be x,. If we want to refer to one particular data value but we don’t want to be
specific that we are dealing with the first, second, third, or nth value, we use
the symbol x,. If we then said that i was 1, we would be dealing with x|, if { was
2, we would be dealing with x,, and so on. To find the average, we first add ail
the data values. In symbols, thisisx, +x,+x,+...+x, where the +. .. + here
means to keep on adding up all the values in between the third and the nth.
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Adding all the data values can be more compactly written as

"
)
i=1

The symbol % is the Greek equivalent of the English “S™ and stands for
“sum up.” The symbolism literally means sum up all the values of x, where i
takes each of the values in turn between | and n; in other words, x, + x, + x;, +
...+ x,. With this notation, the formula for finding the mean is written

SO we write

END OPTIONAL

If we have measured all the individuals in the population, we can calculate
the true population mean. The formula is the same as for the sample mean, but
we use the symbol p (the Greek letter mu) instead of x. In general, numbers
describing a population are denoted by a Greek letter and estimates of these
numbers obtained from a sample are denoted by an English letter.

The Median

The median is obtained by writing the data in ascending order and finding
what the middle value is (in our previous example with the numbers 11, 10,
and 21, the numbers in ascending order are 10, 11, 21). The middle value
(here it is 11) is called the median. In other words, the median is halfway
along the data from smallest to largest. If the data values were 13, 2, 7, 19,
154, 26, and 38, the median would be 19.

OPTIONAL

If there are an odd number of data values, it is always possible to find a middle
number. If there are 2n + 1 data values, the (n + 1)th has n values below it and
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n values above it. If there are an even number of data values, the median is
taken to be the average of the two numbers closest to the middle. Say the data
values were 13, 2, 7, 19, 154, and 26; the median is taken to be 16, which is the
average of 13 and 19, since there are three numbers below 16 and three num-
bers above 16 and 16 is halfway between the two middle numbers, 13 and 19.

END OPTIONAL

The Mode

The mode is the most commonly occurring value. If the data values con-
sisted of the numbers 10, 10, 11, and 21, then the mode would be 10. If the data
values were 19, 20, 17, 21, 20, 18, 20, 154, 19, and 756, the mode would be 20. If
the data values were 19, 20, 17, 21, 756, 20, 18, 20, 154, 19, 756, and 756, then
there would be two modes: 20 and 756. The data in this case are said to be
bimodal. In contrast, data that have just one mode are referred to as unimodal.

OPTIONAL

The term bimodal is also used, loosely, to describe situations where there are
two different values that are more common than neighboring values but not
necessarily just as common as each other. For example, completely clear days
are more common than days with | percent cloud, 2 percent cloud, and so on,
and completely overcast days are more common than days with 99 percent
cloud, 98 percent cloud, and so on. In this situation we use the term bimodal to
describe cloud-cover data. Strictly speaking, the data have two modes only if
the most common values, 0 percent and 100 percent, occur just as often as
each other. Nevertheless, the cloud data we have described would be called
bimodal even though 0-percent cloud days are not exactly as common as 100-
percent cloud days.

END OPTIONAL

The mode is generally useful when the data are discrete and the number of
values that are likely to occur are fairly small. For example, the mode is a
useful measure of the central tendency in family size. The number of children
in families can take only a relatively small number of discrete values, say 0, 1,
2.3, ...,20. If families with one child are more common than families with
any other number of children, we say the modal number of childrenis 1. As a
measure of the center of the data it could seem more reasonable to use this
mode of [ than to use the mean number of children, which might be 1.83. The
mean is a valid measure of central tendency, but it doesn’t give us an immedi-
ate picture of a typical family the way the mode does. The mode would simi-
larly be useful if we were talking about weekly earnings rounded to the nearest
$100. Only the numbers $200, $300, . . ., $2,000 are likely to be particularly
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common. Numbers like $1,328,400 for weekly earnings, while they may oc-
cur, would be very rare. However, this example leads us to the disadvantages
of the mode. What if we wanted to get the mode more accurately and so asked
people their weekly earnings specified to the exact number of cents? Then we
might find that even in a large survey just about everybody was different, at
least in the cents. If everybody’s income was different, this would make
everybody’s income a mode (each value would occur just as commonly as
every other value), and then the mode wouldn’t be very useful. There wouldn’t
be a single mode that would stand out as the center of the data. In general, it is
not useful to try to precisely locate the mode when dealing with continuous
data or when dealing with discrete data where the units are tiny (e.g., cents)
compared to the data values (e.g., hundreds of dollars). As a result, in most
situations modes are not a commonly used measure of central tendency.

Reasons for Different Measures of Central Tendency

We’ve just discussed the advantages and disadvantages of modes compared
to means as a measure of central tendency. What are the advantages and disad-
vantages of medians compared to means? Which is best? The answer to this
question is that there is no absolute right way of defining where data values
are centered. Different definitions have different purposes. Consider income
for adults in the United States. Very roughly, there are about 200 million adults
and the combined weekly income is about $400 billion. Dividing 200 million
into $400 billion gives us a mean weekly income of $2,000. Most people will
protest about such a figure being declared a measure of where weekly income
in the United States is centered. Most people would say that they know hardly
anybody who earns that much. If we were to round income to the nearest $100
per week, we might find that $500 per week is the most common or modal
income, but, as discussed, it might not be meaningful to try to define the mode
much more precisely. Why is this rough mode of $500 so different from the
mean of $2,000? After all, both are meant to be measuring where the data are
centered. The answer to why mean and mode can give very different impres-
sions of where the data are centered can be understood by drawing a horizon-
tal line on a page. The left-hand end of the line could be marked O to stand for
a weekly income of $0, | cm to the right denotes an income of $100 per week,
2 cm to the right denotes $200 per week, and so on. Let’s imagine we make
marks on the line corresponding to each person’s weekly income. What we
are making is called a line graph.

Tt 2 3 4 5 6 7 8 9 M ——  Zzw
236 meters up the road
Line graph showing income of a few of the millions who earn under $1,000 per

week and one “high flyer.”” Axis labelled in centimeters, with each centimeter
representing $100 per week.
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Chances are that just about everybody you and I know would have their
income marked somewhere along the first 40 cm. However, there are a hand-
ful of people with enormous incomes of several million dollars per week. On
our line graph these people would be marked hundreds of meters off the right
of the paper. Those data values that are remarkably extreme are referred to as
“outliers.” These sort of data, where values trail out particularly in one direc-
tion, are referred to as “skewed data.” In particular, we would describe income
data as being markedly skewed to the right or as having a long right-hand tail.
The average of a few measures of hundreds of meters, perhaps a few hundred
measures of tens of meters, a few thousand measures in the meters, along with
millions of measures of around 5 cm turns out to be about 20 cm. The average
or mean income is likewise about $2,000, but this measure is not an accurate
reflection of the financial standards of the vast bulk of people.

In this situation, whether we regard the mean or the mode as the best mea-
sure of where income is centered is really a political decision. If we are inter-
ested in the living standards of typical members of the society, the mode is a
better measure. However, politicians with a vested interest in making figures
look good or with an ideology that values wealth rather than people might
regard the mean as a measure that better reflects their purposes. On the other
hand, those who want to use the mode face the disadvantage of not usually
being able to define it precisely. The compromise choice is the median. By
definition, half the population earns below and half above the median, but the
extreme incomes of the ultrarich do not influence the position of the median.
In general, with skewed data the median will lie between the mode (to the
extent that this can be estimated) and the mean. Medians are often regarded as
a fairer measure of the center of skewed data than means. However, means are
generally casier to deal with mathematically and are generally regarded as the
fairest measure of where data are centered when the data are not particularly
skewed.

Measures of the Variability, Spread, or “Dispersion” of the Data

Just as with measures of where the data are centered, there are several measures
of how spread out the data are, each with its own advantages and disadvantages.

Range

The most obvious measure of spread is the range, which is the gap between
the highest and lowest values. This measure is fine, provided we just want to
summarize the spread of the data we have at hand. However, often we are
interested in what the data tell us about the spread of values in the population.
Say we wanted information on the spread of heights of adult women. If our
sample consisted of just one woman, the smallest value we had in our sample
and the largest value we had in our sample would be the same thing, the height
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of the one woman we had chosen. In this case the range would be 0 cm. If just
a handful of women are chosen, chances are that all will have a height be-
tween 1.50 m and 1.75 m, giving a range of 25 cm or less. However, if a large
number of women are examined, sooner or later we will come across a woman
who is exceptionally tall and sooner or later we will also come across a woman
affected by dwarfism. When we have collected enough data to include such
exceptional people, the range may turn out to be 75 cm or more. The range
then reflects how big our sample is as well as reflecting how spread out heights
are in the population. It would be preferable to find a measure of spread that
reflects only the spread of the values in the population and that isn’t greatly
influenced by the number in the sample. For this reason, the range is not gen-
erally regarded as a satisfactory measure of spread.

Mean Deviation

There are several approaches to finding a measure of spread that is not
substantially affected by the number of data values obtained. One approach is
to find the average of the spread of the data about the mean. This is called the
mean deviation. Say we measured the heights of just three women and they
were 159 ¢cm, 165 ¢cm, and 171 cm. The mean is 165 cm. Two measures are 6
c¢m from the mean and the other is 0 cm from the mean. We say that the mea-
sures deviate by 6 cm, 0 cm, and 6 cm from the mean. The average of 6, 0, and
6 is 4. This could be our measure of spread in this case. Clearly a procedure
like this could be generalized to a case when there are more data values, and
the average of the deviations from the mean could be used as a measure of
spread. There is little wrong with this measure of spread, but it is not used
because of mathematical difficulties. In particular, the value 171 is 6 above the
mean and the value 159 is 6 below the mean. The average of 6 above (+6), 6
below (—6), and 0 is 0. In general, since the average is in the middle, there will
always be values as much above the average as there are below the average, so
the average of the deviations will always be O unless we ignore the minus
signs that are attached to some of the deviations. The act of ignoring minus
signs is referred to as taking absolute values. The average of the absolute val-
ues of the deviations is then a possible measure of spread. However, absolute
values are awkward to deal with mathematically.

OPTIONAL

Mathematics used in the theory of statistics in effect consists of rules to find
best answers partly by using a method (calculus) that follows trends. An abrupt
change of rule so that numbers slightly above 0 keep their correct sign but
numbers slightly below 0 have their sign reversed, makes for difficulties in
following trends.

END OPTIONAL
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Therefore, the mean deviation is little used as a measure of spread.

Variance

Squares of numbers are much more convenient mathematically than abso-
lute values.

OPTIONAL

In terms of calculus, the function y = x* is differentiable—that is, it is smooth—
whereas the function y = the absolute value of x, is not differentiable. The
graph of this function comes to a sharp point at the origin.

END OPTIONAL

Like absolute values, squares also turn a mixture of negative values such as
—6 and positive values such as 6 into all positive values (-6 x -6 = +36).
Instead of averaging the absolute values of the deviations from the mean, one
of the measures of spread commonly used is the average of the squared devia-
tions. This measure is called the variance.

OPTIONAL

The variance has a nice mathematical property. In particular, it can be shown
that under some common circumstances variability as measured by variance
adds up in a straightforward way when variable values are added. For ex-
ample, if we knew that the variability of the heights of pony backs as mea-
sured by variance was 225 units and we knew that the variability of the heights
of women as measured by variance was 100 units, then under some common
circumstances the variability of the distance from the ground to the tops of the
heads of women standing on pony backs would be 325 (225 + 100). This
addition of variability as measured by variance applies whenever there is no
tendency to pair tall women with tall ponies or vice versa, a condition known
as independence. By contrast, the heights of women and the heights of their
husbands are unlikely to be independent, as tall women tend to prefer to marry
even taller men. In this case we would say that the heights of women and the
heights of their husbands are dependent.’

END OPTIONAL

Standard Deviation

Variance as a measure of variability has a major drawback. Because of the
squaring, the units of measurement don’t match up with what has becn mca-
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sured. The height of women might be measured in cm, but the variance would
then be in square cm. To get back to the original units we need to take a square
root. The square root of the variance is the most widely used measure of the
spread of data. It is called the standard deviation. The standard deviation is
then the square root of the average of the squared deviations. The standard
deviation of a sample is denoted s; the standard deviation of a population is
denoted by the Greek letter o.

OPTIONAL

There is, however, one further minor modification required in the definition of
the standard deviation. If we had only one data value, the average would be
the same as the data value. The deviation would then be zero and the square
root of the average of the squared deviations would also be 0. The standard
deviation, then, as we have described it, would be zero

=

whenever we have just one data value. But this is silly. If we have only one
data value, we cannot estimate spread. We shouldn’t say pony heights have
zero standard deviation (i.e., don’t vary at all) simply because we have only
measured one pony. Any formula for calculating spread when there is only
one data value should give the answer “undefined”
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We deal with this difficulty by modifying our method of calculating the aver-
age of the squared deviations. We sum all these squared deviations but divide
by one less than the number of squared deviations instead of dividing by the
number of squared deviations. Put another way, if there are two data values,
we really have information about only one deviation even though we can de-
fine two deviations from the average. Likewise, if there are n data values, in a
sense we have only n — | measures of the deviations. For this reason, in calcu-
lating the average of the squared deviations we should divide by n — 1 rather
than n. The formula, then, for the standard deviation of a sample is

If we have measures on the whole population, a census, we calculate the popu-
lation standard deviation using the formula
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where (. is the population mean. It can be shown that in some sense the for-
mula for s involving division by n — | is the “best” estimate of the population
standard deviation o (see Chapter 4). When # is large there will be a negligible
difference between the results of using the formulae for s and for o.
Although standard deviations have the advantage of the same units of mea-
surement as the original values, one nice mathematical property does not hold.
Unlike the situation with variances, standard deviations don’t add in a straight-
forward way. Referring to the example of the heights of ponies and women in
the discussion about variance, if the standard deviation of the heights of pony
backs is 15 cm (y225) and the standard deviation of the heights of women is
10 ¢m (,100), the standard deviation of the heights of women standing on
pony backs will not be 15 + 10 =25 cm. Instead, if we want to find the stan-
dard deviation of the heights of pony-woman combinations we need to use
the fact that variances add. We know that the variance of the heights of pony—
woman combinations is 225 + 100, so the standard deviation will be /225 + 100,
or about 18.03 cm (assuming independence). The fact that standard deviations

ematical rule a® + b* # a+ b.

END OPTIONAL

Interquartile Range

Recall the disadvantage of the mean in dealing with data with a long tail,
such as income data. If we use the mean as a measure of central tendency, a
few extreme high fliers gives us a distorted view of where most people are at
financially. The same sort of disadvantage applies when using standard devia-
tion as a measure of spread. With the standard deviation, a few extreme devia-
tions give us a distorted view of the size of typical deviations. The interquartile
range (IQR) is a method of measuring spread that is not unduly sensitive to a
few extreme deviations. The interquartile range can be roughly described as
the range of values that contains the middle half of the data, with a quarter of
the data values being below the interquartile range and a quarter of the data
values being above the interquartile range.

To be more precise requires a definition of quartiles and percentiles. The
first quartile is one-quarter of the way along the data from smallest to largest.
Likewise, the third quartile is three-quarters of the way along the data from
smallest to largest. The first quartile can be called the twenty-fifth percentile.
Other percentiles are defined similarly. The median could be called the second
quartile or fiftieth percentile. The interquartile range is then the gap between
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the first and third quartiles. For example, if the data consisted of the numbers
1,2,2,7,8.,9,9, and 24, the first quartile would be 2, the third quartile would
be 9, and the interquartile range would be 7. Because of mathematical diffi-
culties, the interquartile range is less widely used than standard deviation.

OPTIONAL

There are some minor difficulties in deciding exactly which point should be
regarded as one-quarter of the way through the ordered data. Unless the num-
ber of data points is a multiple of 4, it is not possible to divide the ordered data
exactly into quarters. We can define the first quartile regardless of whether the
number of data points is an exact multiple of 4 by finding a data value so that
counting this particular value and those below it we have one-quarter or more
of all the data values. Yet counting this particular value and those above it we
have three-quarters or more of all the data values. It is possible for there to be
two particular values that satisfy this property (this occurs when the number
of data points is in fact a multiple of 4; if there are 4n values, both the nth and
the (n + 1)" satisfy the property). In this case, we take the average of these two
values. The third quartile and the various percentiles are defined similarly.

The mathematical difficulties that restrict the use of the interquartile range
reflect the fact that the rule for averaging squared deviations and taking the
square root to give the standard deviation can be stated reasonably simply,
whereas obtaining the interquartile range involves the more complicated pro-
cess of comparing each data value with all others to identify the values one-
quarter way through and three-quarters way through the ordered data.
Mathematics is needed here to work out the amount of variability likely when
different samples from the same population are the source of the summary
statistics.

END OPTIONAL
Table 2.1 provides a list of the numbers used to summarize data.

SUMMARIZING DISCRETE AND CONTINUOUS
DATA WITH DIAGRAMS

As with summarizing data by numbers, there is no single method of sum-
marizing and displaying data by diagram. Different methods have different
advantages and disadvantages.

Line Graphs

Line graphs, where the location of each data point is marked along a line,
were mentioned in the discussion of the mode. A line graph was used to dis-
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Table 2.1

Numbers Used to Summarize Data

Meaures of Definition Symbol Advantages Disadvantages
Central
Tendency
unfair
Mean Simple average X mathematically  representation of
(1) convenient center of highly
skewed data
more fair
Median Half way along ordered representation of  mathematically
data center of highly inconvenient
skewed data
more fair not meaningful
Mode Most common value representation of  when data takes
center of highly continuous or
skewed discrete finely divided
data discrete values
Measures of
Spread
Reflects size of
Range Gap between smallest and Simple the sample as
largest well as the
underlying
spread in the
population
Mathematically ~ Unit of measure
Variance average of the squares of var convenient. is the square of
the deviations from the Additive data units.
mean property (if there  Unduly affected
(divide by n - 1 rather than is independence) by a few large
n in taking the average) deviations
Standard square root of variance $ Mathematically  Unduly affected
Deviation (o) convenient by a few large
deviations
Interquartile  Range of values containing QR Not unduly Mathematically
Range the middle half of the data affected by a few inconvenient

large deviations

play hypothetical data on income distribution on page 17. This is the simplest
form of diagrammatic representation of data, though it is not widely used. It
has the disadvantage that the diagram becomes unclear when the number of
data points is large. Line graphs also can’t display repeated instances of ex-
actly the same values. This is a particular problem in the case of discrete data.
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Stem and Leaf Plots

A stem and leaf plot is a way of arranging the printing of data values on the
page so that the overall shape of the print gives an impression of the shape of the
data. It has another use, in being a convenient method of sorting data by hand from
smallest to largest. It has the disadvantage of only being able to display data to two
significant figures (e.g., the tens column and the units column).

The following example explains the idea. Say some pollution measure on
twenty-five different days were 31,37,22,4,19,42,34,28,51, 11,27,32,47,
34, 15, 26, 18, 30, 43, 26, 44, 30, 22, 13, and 39. We first see that all data
values, written in the form of x tens and y units, have an x value of between 0
and 5 (i.e., all the data values are between the units and the fifties). We then
write the numbers O to 5 down the page, denoting the possible tens column
values, followed by a vertical line. These numbers are the stems. We then look
through the data values one by one and write the unit value for each data item
adjacent to the appropriate tens value, continuing until all the items have been
written down. These unit values are the leaves (see Figure 2.1).

Finally, we order the unit numbers to give the completed stem and leaf plot.
It can be seen that the stem and leaf plot displays all the data that were col-
lected to two significant figures, but displays the data in a form that gives a
visual impression like a histogram on its side (see Figure 2.2).

Histograms and Ordinate Diagrams

Histograms are the most widely used way of displaying continuous and
discrete data in diagrammatic form. The first step in drawing a histogram is
the preparation of a frequency table. The following frequency table is based
on the same data as in the stem and leaf plot. It can be obtained by looking
through all twenty-five data values and noting that there is just one value be-
tween 0 and 9 (inclusive), five values between 10 and 19 (inclusive), and so
on. It can be obtained more easily from the stem and leaf plot by counting the
number of leaves for each of the stems(see Figures 2.3 and 2.4).

Histograms represent numbers by area rather than by height. Usually inter-
val widths are equal (i.e., the widths 0—10, 10-20, and so on in the histogram
here are equal). With equal widths, areas and heights are proportional and we
can think of the histogram as representing numbers by height. However, in
unusual cases we may want histograms where the interval widths are unequal.
For example, say we had the information that of 2,000 newborns who died,
1,000 did so within twenty-four hours of birth and the remaining 1,000 died
between twenty-four hours and thirty-one days. The death rate per day after
twenty-four hours is one-thirtieth the death rate in the first twenty-four hours.
The histogram should then consist of a column one day wide and 1,000 units
high followed by a column thirty days wide and one-thirtieth the height of the
first column. The two columns will have equal areas, since there are 1,000
deaths in each group (see Figure 2.5).
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Figure 2.1
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The boundaries of the columns in a histogram are another source of pos-
sible confusion. If we are dealing with continuous data, a figure of 30 will be
a figure rounded to two significant figures. The figure 30 therefore represents
a true value somewhere between 29.5 and 30.5. We see that any value be-
tween 29.5 and 39.5 would therefore fall into the interval labelled 30 to 40 on
the histogram presented in Figure 2.4. The boundaries of the intervals should
therefore be labelled 29.5, 39.5, and so on. The labelling of this histogram is
therefore in error by 0.5. There is one exception. Ages are generally rounded
down, not simply to the closest whole number. A person aged forty-nine years



Descriptive Statistics 27

Figure 2.2
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and eleven months will tend to give his or her age as forty-nine, not fifty. The
existing labelling on the histogram is thus valid for age data.

The last point about histograms is that they are not a strictly logical repre-
sentation of discrete data. If we drew a histogram for the number of children
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Figure 2.5
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in a family, the fact that, say, twenty-three families had two children would be
represented by an area 23 units high sitting on a base between 1.5 and 2.5. But this
is a rather silly representation: Values between 1.5 and 2.5 other than the value of
exactly 2 are not possible. The response to this complaint is to draw what is called
an ordinate diagram, rather than a histogram. Instead of using an area of some
width to represent the number in the category, a vertical line or ordinate is
used and its height represents the number in the category (see Figure 2.6).

Figure 2.6
Ordinate Diagram
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Boxplots

Boxplots are diagrams that show the interquartile range and median of the
data as a rectangular box with a line at the median drawn across the box. “Whis-
kers” extend from either end of the box to display the range of data values. There
is only one logical way of drawing a histogram, but conventions regarding the
display of the range of values on boxplots are arbitrary and vary from author to
author. Usually the whiskers extend to the furthest data points within a distance of
1 or 1.5 IQR on either side of the box with any more extreme points (outliers)
being marked individually. The boxplot presented here represents the same
data as in the stem and leaf plot and the first histogram (Figure 2.7).

Boxplots generally display less information than histograms. A histogram
with many columns will give a detailed picture of the location of the data
values to within the width of a narrow column, whereas a boxplot does little
more than show a division of the data into four quartiles. However, boxplots
are useful for making a large number of visual comparisons. Imagine that we
wanted to compare peoples’ incomes from twenty different regions. A set of
twenty histograms to display all the data could not be easily absorbed by the
eye. However, twenty boxplots could be drawn, one underneath the other down
the page, and it would be obvious which region had larger overall incomes
and which region had the greatest amount of inequality in terms of the spread
of values between rich and poor.

Figure 2.7

whisker 1QR whisker
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SUMMARY

* Most populations are large or infinite and a census is not feasible. Instead, we select
a sample of a relatively small number of individuals to give us probabilistic ideas
about the population.

» There are pitfalls in trying to select a sample that is representative.

» Data or measurements are of various types: categorical (including dichotomous),
ordinal, discrete, and continuous.

» Different data types are summarized in different ways.

 Categorical and ordinal data are easily summarized by tables. bar graphs, and pie
charts.

 Discrete and continuous data are summarized pictorially by stem and leaf plots,
histograms, and boxplots.

« Discrete and continuous data are summarized numerically by measures of central
tendency and measures of spread, as listed in Table 2.1.

QUESTIONS

1. Measure the heights of the people in your class. Make a stem and leaf plot to help
you both order and display the data. Then create a frequency table, a histogram,
and a boxplot to display your results (for the boxplot you will need to specify the
rules you use in its construction; in particular, what rule determines the length of
the whiskers?). Calculate the mean and standard deviation (you will have already
calculated the median and interquartile range as a preliminary to drawing the
boxplot). Note that some or all of the work can be done by a statistical program on
a computer (although the pds program, written to accompany this book, does not
do diagrams). However, hand calculations to enhance understanding and to verify
the accuracy of the computer program arc worthwhile initially. Computer calcu-
lations may be affected by programming error. Furthermore, the computer may
not always do the calculation that you expect it to do, for various reasons: The
data may not be in the format the program expects, you may press the wrong
button, or the computer may be programmed to base its calculations on slightly
different definitions from the ones taught here (which is likely in the case of
interquartile range).

2. An opinion poll is taken by phoning people whose names are chosen at random
from the telephone book. Why might this sample not be representative?

NOTE

1. This additive property is proven using the definition of variance as the average of
the squared deviations, and some algebra. The rough outline of the proot follows. If
the height of the /" woman is x, and the height of the /" pony 1s y,, then the deviation of
the height of the /" woman and /" pony combination from the average is [(x, + y,) — (X + )].
From the definition, proving that variances add. amounts to proving that the average of
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the squarc of deviations, [(x, + v)) — (X +77)]", over the various combinations of values
of i and j is the same as the sum of the averages of (x; - ¥)? and (y, - ¥)°. The algebra
involves writing [(x; + v} — (¥ + )" as [(x, - X) + (v,— )]’ and expanding this term, but
there are complications in the algebra here. The expansion gives cross terms, just as
the expansion of (a4 + b)* gives the cross term 2ab as well as the more obvious terms «*
+ b*. However, providing we are dealing with all possible combinations of values of /
and j, the cross terms turn out to be zero for the same reason that the average of all
positive and negative deviations about the average are zero.
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CHAPTER 3

Basic Probability and
Fisher’s Exact Test

To deal further with the variability and uncertainty that commonly arise whenever
measurements are made, we need to know a little about the mathematical theory
of chance: probability. In this chapter we will cover the basic ideas of probability
and use the ideas to explain our first statistical test: Fisher’s exact test.

DEFINING PROBABILITY

There are at least three approaches to defining probability, all of which turn
out to be compatible with each other:

1. In terms of the long-run proportion of the time that something happens. For ex-
ample, the proportion of time “6” appears on throwing a fair die many times is
one-sixth. We say the probability of throwing a “6” is one-sixth. The expressions
“the proportion of the time something happens™ and “the probability that some-
thing happens” are taken to be equivalent.

2. Interms of a measure of belief. For example, we can state a subjective probability
about the chance of a nuclear war over the next ten years. A person might believe
that this probability is one-sixth. This would be a valid statement of belief, even
though it is clearly not possible to view thousands of worlds just like our own and
observe that one-sixth of them blow themselves up with nuclear weapons over the
course of ten years.

3. As an abstract mathematical construct from basic rules. The rules say that prob-
ability is a number between 0 and | that can be attached to any event that might
occur. A probability of 0 means the event won’t occur. A probability of | means
the event will occur with certainty. The probabilities of events that can’t both
occur at the same time add in the ordinary way to give the probability of either
event occurring. For example, the probability of a die landing on either a “5” or a
Y67 1s 1/6 + 1/6 = 1/3.
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As simple as these axioms are, they give rise to a large mathematical theory
that can be shown to be compatible with both the “proportion of the time” and
“measure of belief™” approach to probability, but the details of this are beyond
the scope of this book.

PROBABILITIES OF COMBINATIONS OF EVENTS

Often it is necessary to deal with the probabilities of combinations of events.
In dealing with combinations of events, it is sometimes appropriate to add
their probabilities and sometimes appropriate to multiply them. The rules about
finding the probabilities of combinations of events can be derived mathemati-
cally from the axioms. We will instead just quote the rules, but we will also
show that the rules are sensible by using examples and diagrams.

Addition Rule for Probabilities: “or”

In situations where we want to know the probability that either one event or
another particular event has occurred but where the two events can’t occur to-
gether, we simply add the probabilities (this is in fact one of the axioms of
mathematical probability theory). For example, if the probability that a person has
one brother is 0.4 and the probability that a person has no brothers is 0.3, then the
probability that a person has no more than one brother is 0.4 + 0.3 =0.7.

There is a pictorial way of describing events and their probabilities and the
way they combine: Venn diagrams. In these diagrams events are represented
by patches in a rectangle, with the size of each patch being roughly propor-
tional to its chance of occurring.

The Venn diagram for the addition rule is shown here, where A is the event
a person has no brothers and B is the event a person has exactly one brother.
The diagram shows no area of overlap between the areas covered by A and B,
for it is impossible for both to be true at the same time. We say the events in
these circumstances are mutually exclusive. The unlabelled area in the dia-
gram represents the event that neither the event “has no brothers™ nor the
event “has one brother” is true. In other words, it represents the event that the
person has more than one brother.
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The addition rule can be extended to the case of more than two mutually
exclusive events. In our example, if we were told that the probability of hav-
ing exactly two brothers was 0.1 and that the probability of having exactly
three was 0.08, then the probability of having three or fewer would be 0.4 +
0.3+0.1 +0.08 =0.88.

Multiplication Rule for Probabilities: “and”

In situations where we want to know the probability that both one event and
another particular event have occurred, and where the occurrence of one event
does not affect the occurrence of the other event, we simply multiply the prob-
abilities. For example, if the probability that a person has one brother is 0.3 and
there is a probability of 0.2 that the next scratch-it lottery ticket that the person
buys is a winner, then the combined probability that the person has one brother
and will win on the next scratch-it ticket is 0.3 x 0.2 = 0.06. The logic of the
rule may become clear from the Venn diagram for the multiplication rule.

In the Venn diagram, A is the event a person has one brother and B is the
event the person’s next scratch-it ticket wins. We say that events A and B are
independent if the chance of B being true, knowing that A is true, is just the
same as the chance of B being true overall regardless of whether A is true.
Clearly, knowing a person has one brother doesn’t affect his or her chance of
winning the lottery, so A and B here are independent. This is shown on the
diagram by drawing the area of overlap (the probability of A and B occurring
together) in the same ratio to the area of A as the area B is to the whole rect-
angle. The area A&B is 20 percent of the area of A, and the area of B is 20
percent of the area of the entire rectangle.

A&B B
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Put another way, since 0.2 of the time a person’s next scratch-it ticket will
win and this is true regardless of whether they have exactly one brother or not,



36 Statistics with Common Sense

and since their chance of having one brother is 0.3, on 0.2 of the occasions in
which the 0.3 chance of having one brother eventuates, the person will also
buy a winning scratch-it ticket. The chance of both events occurring is there-
fore 0.2 0f 0.3, 0r 0.2 x 0.3 = 0.06, and this is the area represented by A&B on
the Venn diagram.

The multiplication rule for independent events can also be extended to the
case where there are more than two events. If we toss four fair coins once (or
toss a single fair coin four times), whether we get a head on one coin cannot
physically affect the outcomes on other coins. so tosses of coins are indepen-
dent. On each toss the probability of a head is ¥2. By the extended multiplica-
tion rule for a series of independent events. the overall chance of four heads in
arowisVax V2 x Y2 x A

One way of convincing yourself of the sense of this rule is to consider six-
teen tosses of four coins at a time. Say the coins are labelled A, B, C, and D.
Out of the sixteen sets of coin throws we would expect there to be, on average,
eight sets of throws in which coin A comes up heads. Out of these eight sets of
throws we would similarly expect there to be, on average, four sets of throws
in which coin B comes up heads. Out of these four sets of throws we would
similarly expect there to be, on average, two sets of throws in which coin C
comes up heads. Out of these two sets of throws we would similarly expect
there to be, on average, one set of throws in which coin D comes up heads.
Therefore, on average we would expect just one set of throws of the four coins
out of sixteen sets of throws to deliver all heads. The probability of all heads is
therefore 1/16, which matches the result 12 x %2 x V2 x ¥ for the extended
multiplication rule.

Often events are neither mutually exclusive nor independent. For example,
knowing that a person is male decreases the chance of that person being short
(compared to the overall average height of males and females combined). so
the events “male” and “short™ are not independent. On the other hand. the
events “male” and “short” are not mutually exclusive, since it is possible for a
person to be both “male™ and “short.” This situation will be discussed later,

Probability That an Event Does Not Occur: “not”

One other basic rule of probability that we will use is that the probability
that an event does not occur is 1 minus the probability that the event does
occur. If the probability of having exactly one brother is 0.4, the probability of
not having exactly one brother is 0.6.

Venn Diagram Conventions

Traditionally, Venn diagrams are drawn with ellipses rather than drawn with
rectangles.
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However, the use of rectangles rather than the traditional ellipses shows
whether the area of overlap is in proportion to the area of both rectangles, as
should be the case for independent events.

MORE COMPLICATED PROBABILITY RULES

The Modified Addition Rule

Often we want to find the probability of a combination of events that do not
meet the criteria for the addition rule or the multiplication rule. The modified
addition rule when events are not mutually exclusive is best explained by a
Venn diagram.

Consider a lecturer in front of a large class closing her eyes and picking
someone at random. Say we wanted to find the probability that the person
picked will either be a woman or someone less than 1.6 m tall (or both). Take
A to be the event that the chosen person is female and B to be the event that
the chosen person is less than 1.6 m tall. These events are not mutually exclu-
sive, since females less than 1.6 m exist and some such people presumably
will be part of the class the lecturer is standing in front of.
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The diagram shows that if we added together the chance of choosing a
woman (represented by area A. including the area A&B) to the chance of
choosing a person less than 1.6 m tall (represented by area B, including the
area A&B) we would be counting the chance of choosing a women less than
1.6 m tall (represented by area A&B) twice. To allow for this, the rule is “the
probability of the event A or B or both occurring equals the probability that A
occurs plus the probability that B occurs take away the probability that both
occur together.” The abbreviation for “or” in algebra is U and the abbreviation
for “and™ is M, so in symbols the rule is written as

P(AU B)=P(A)+ P(B)-P(AN B)
(or) (and)

For example, if the probability of A (choosing a female) is 0.5, the prob-
ability of B (choosing someone less than 1.6 m tall) is 0.3, and the probability
of A&B (choosing a woman less than 1.6 m tall) is 0.2, then the probability of
choosing a person who is either a woman or who is less than 1.6 m tall or both
is0.5+0.3-0.2=0.6.

This is roughly represented by the Venn diagram. Here the area A (includ-
ing the area A&B) is about 50 percent of the total area of the Venn diagram
rectangle. The area B (including the area A&B) is about 30 percent of the total
area of the rectangle. The area A&B itself is about 20 percent of the total area.
We see that the sum of all the shaded areas representing the options of A or B
or both is about 60 percent of the total area.

The Modified Multiplication Rule

The modified multiplication rule when events are not independent can be
explained by reference to the same diagram. The modified multiplication rule
gives us the probability of A and B occurring together if we know the prob-
ability of B occurring given the information that A has occurred (or vice versa).
Take A to be the event a person is female and B to be the event that a person is
less than 1.6 m tall. It makes sense to believe that the probability of finding a
female person less than 1.6 m tall equals the probability of finding a person
who is less than 1.6 m tall, knowing that the person is female, times the prob-
ability that person is female.

The abbreviation for “knowing that” (or “given that™ or “given the informa-
tion that”) in algebra is an elongated vertical line, |, so that in symbols we
write P(A N B) = P(B|A) x P(A). In a Venn diagram, P(B|A) is represented by
the proportion of area A that is also occupied by B. The jargon for P(BJA) is
“the conditional probability of B given that A is true.” For example, say that
40 percent of females in the lecture are less than 1.6 m tall (i.e., the condi-
tional probability of less than 1.6 m tall, given a female is chosen, is 0.4 this
is represented on the diagram by the fact that the area A&B represents 40
percent of the total area of A, where A is taken to include the area A&B). Say
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also that the probability of choosing a female is 0.5. The probability that a
person is chosen who is female and less than 1.6 m tall is then 0.4 x 0.5 =0.2.

The Extended Modified Multiplication Rule

There is an extension to the modified multiplication rule to the situation of
more than two events. Only one simple type of situation will concern us. Say
we had to choose three balls blindly from a box that contained three red balls
and one black ball. If each of the three choices were independent of the others,
we would have a %4 chance of choosing a red ball on each occasion, and by the
simple rule of multiplication there would be a probability of 34 x 34 x 3% = 77/
of choosing all red balls. However, unless we replace each ball and shake the
box after each choice, the three choices aren’t independent: If we get a red on
the first choice there are fewer reds to get on the later choices. To get three red
balls in three choices, the first choice must be a red ball, but that Ieaves only
two red balls to be chosen from three balls, a chance of /. The chance of two
red balls out of the first two choices is then 34 x */a. So far this just illustrates
the rule P(A N B) = P(A) x P(BIA). When it comes to the third choice we have
only one red ball left out of two balls, so the probability of this choice giving
a red ball as well is ¥2. The overall probability ot all three choices giving red
balls is then 3% x */3 x Y2 = 4.

The same idea—the extended rule of multiplication—can be extended to
the case of choosing a greater number of red balls from a box containing these
red balls together with any number of black balls. If there are five red balls
and nine balls in total in the box, the chance that we would get just the five red
balls when we chose five balls at random from the box is o x s x 37 x % X /5.

If there are k red balls and # balls total in the box, the chance that we would
get just the & red balls when we chose & balls at random from the box is

k k-1 k-2 k-3 k—(k=-2y k-(k-1
—x X X X...X X ,
n n-1 n-2 n-3 n—(k-2) n—-(k-1)

which can be rewritten as

kxk-—1Dxk—-2)x...x3x2x1
Axm—Dxm=2)x...xn-k+3)xn-—k+2)x(n—k+1)

APPLICATION OF THE EXTENDED MODIFIED
MULTIPLICATION RULE TO FISHER’S EXACT TEST

We now have enough probability theory to explain our first statistical test.
The test is Fisher’s exact test. It applies when we have individuals that can be
categorized by two separate methods and where each method ot categoriza-
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tion divides individuals into just two categories. In this situation, we might
want to know if it is reasonable to believe that the way an individual is catego-
rized by one method is linked to the way the individual is categorized by the
other method. To explain, consider an example.

Fired Not Fired Totals

Women 3 0 3
Men 0 2 2
Totals 3 2 5

Say that a new male manager comes to a workplace and fires three of the
five workers. Suppose that three of the original five workers were women and
it turns out that these are the three who get fired. Here one method of catego-
rizing an individual is as a woman or a man, and the other method of catego-
rizing an individual is as a worker who is fired or as a worker who is not fired.
This information is most conveniently displayed in a table. In this situation we
may want to make a decision about whether we believe that being in the cat-
egory “women” is linked to the category of “fired.” Of course, the categories
are linked in this particular instance. However, the manager, who is likely to
be accused of sexism, may argue that this current instance should not be taken
as a reflection of his general attitude. He may argue that, in general, he is not
at all biased against women workers and that it was just by chance alone that
it turned out that in this particular instance the workers who were fired were
all women (we will assume that all the workers were equally competent and
diligent and performing the same job, but economic circumstances dictated
the firing of three of them). Fisher’s exact test is designed to answer the ques-
tion, “Should we believe the manager is sexist?”

Fisher’s exact test, like other statistical tests, takes as its starting point the
idea that until we are persuaded otherwise we should believe that there is no
general linkage between the categorizations, and that the linkage apparent in
this particular instance is just a chance event. In other words, in applying Fisher’s
exact test we start by believing idea 1: The manager ignored gender when he
fired the workers and it was just chance that the fired workers were all women.”
Fisher’s exact test then asks the question, “What is the size of this chance?” If
it turns out that the chance is small, the sort of chance that “hardly ever” oc-
curs, then statistics says that it is more reasonable not to blame the linkage in
this particular instance on a chance that “hardly ever” occurs. Instead, it is
more reasonable to believe idea 2: There is a real reason for the linkage. In
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other words, if it would hardly ever happen that all three women workers
would be fired if three workers were chosen blindly from five, then it is rea-
sonable to believe that the manager has a gender bias. There is a convention
that says that the size of the chance that is so small that it “hardly ever” occurs
is any chance that occurs less often than one time in twenty (in mathematical
symbols, we write p = 0.05).

Our task is then to work out the chance that it would just be the three women
workers who were fired if the three workers to be fired were chosen blindly
from the five workers. This is exactly the chance that only the three red balls
would be picked when choosing three balls blindly from a box containing
three red balls and two black balls. Using the reasoning already explained,
this chance is /s x %a x '/3="/,0=0.1. Since 0.1 is greater than 0.05, according
to the conventions of statistics and the calculations of Fisher’s exact test we
would conclude that the manager’s actions in this instance do not provide
convincing evidence that he is sexist. Often a distorted form of words is used
when a statistical test fails to provide convincing evidence, as in this situation.
In this situation the distorted form of words might be “the figures show no
evidence of sexism,” or, even worse, “statistics show that the manager is just
as likely to sack male workers as he is to sack female workers™ or “statistics
prove that there is no sexism involved.”

Even the more carefully worded orthodox conclusion that there is no con-
vincing evidence that the manager is sexist may not be reasonable. For a start,
Fisher’s exact test, like all statistical tests, started with the assumption that the
manager should not be regarded as sexist unless convincing evidence was
found. There is no good reason why this should be regarded as a reasonable
starting point. There is also no good reason to use the value 0.05 as the size of
the chance that “hardly ever” occurs. Many people would be reasonably con-
vinced that there is a gender bias. given that the only other way we can ac-
count for the sackings of just the women workers is to argue that a 0.1 chance
came off. The issues of an appropriate starting point and an appropriate p
value arise because we want an answer to the main question: Is the manager
sexist? But this is not the question we have answered. Instead, we have ob-
tained a precise answer to a secondary question: If the manager was not sexist,
how often would pure chance alone lead to the apparently sexist sackings that
we observed? We have then leapt from a precise answer to this secondary
question to a conclusion about the main question. In taking this leap we have
not used any judgment or common sense appropriate to the situation. We have
simply used an arbitrary convention that says that if the chance or p value in
response to the secondary question is = (.05 we should state we have con-
vincing (or “statistically significant” or “statistically significant at the 5% level™)
evidence that the answer to the first question is “yes.” Otherwise we should
state we don’t have convincing evidence. Indeed, the phrase “convincing evi-
dence” here is generally shortened to “evidence,” so if p > (.05 we state “we
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have no evidence.” Later in this chapter we will determine the precise math-
ematical link between the main question, “Is the manager sexist?” and the
secondary question, “Assuming the manager is not sexist, how easy is it for
coincidence alone to explain the manager’s action?” We will come to a precise
conclusion about the manager. However, we first need to cover two more rules
of probability: the law of total probability and Baye’s theorem.

Before continuing, we will consider one practical objection that can be raised
with our example. Although 1 stated that we assume that all the workers were
equally competent and diligent, it must be admitied that unlike balls chosen
from a box, individual workers are not identical. Firings of individual workers
are not usually entirely at random. It will therefore be possible for the man-
ager to point to some attributes of the workers he fired in order to justify his
actions: Maybe they had less experience. This does not change the statistical
analysis, but to the extent that we are willing to believe the justifications of the
manager it will change how we word our conclusions. If we entirely believe
his justifications, in place of the possible conclusion “the manager is sexist”
we should write, “In workplaces supervised by this manager, women tend to
be less valuable employees.” The issue, then, is whether this example pro-
vides convincing evidence of this possibility. A way of phrasing a possible
conclusion that is neutral between “the manager is sexist” and “in workplaces
supervised by this manager, women tend to be less valuable employees™ would
be to state, “This manager tends to fire women.” “The manager is sexist” is the
formulation used in our example because it allows a concise form of words in
a lengthy explanation and because it matches my own world view. While [ am
unrepentant about my choice, there is a lesson here: It is easy to load a statis-
tical analysis with ideological bias.

Now consider the scenario discussed in Chapter 1 of music students and
one-half or one hour tuition per week. Let us say the outcome we observed
was not the students’ actual marks on their music exam, but simply whether
they passed or failed. Say the outcome is as given in the accompanying table.

Failed | Passed Totals
' hour lesson 3 0 3
[ hour lesson 0 2 2
Totals 3 2 5

As in the previous example, there are two possible explanations for the
observed outcome: (1) The longer lessons are of no more use than shorter



Basic Probability 43

lessons in helping students pass (it just looks that way purely as a result of
blind chance) or (2) longer lessons do help students pass.

Again, as in the previous case, we start by assuming option 1 is the correct
explanation and using this assumption find out the size of the chance involved.
The calculation is exactly the same as for the firing of the women, so, as
before, p = 0.1. Again, since p > 0.05, frequentist statistics would want us to
state, “There is no convincing evidence that one-half-hour lessons are less
effective than one-hour lessons.” This is a strange conclusion, even less appro-
priate than the conclusion that statistics tells us we should draw in the case of
the manager and the firing of the women. This is because the starting point
that extra music tuition is of no benefit is even more dubious than the starting
point that the manager is not sexist. Indeed, common sense tells us that the
starting point that extra music tuition is of no benefit is almost certainly wrong.
Of course, it is possible to argue that at some point forcing a child to spend
more time in lessons will be counterproductive and that this point is reached at
just the right place between half an hour and one hour that the negativity caused
by the longer lesson exactly balances its positive value. This seems very un-
likely. Common sense suggests that there is likely to be an advantage in hav-
ing one hour rather than half an hour of tuition per week. Therefore, although
if we wanted to we could explain the results by arguing that extra tuition makes
no difference, it just looks that way because a 0.1 chance came off; there is no
point in putting this argument.

Strangely, though, many people who use statistics are unaware of the frequent
conflict between common sense and conclusions based solely on the p = 0.05
tradition of frequentist statistics. Even many research scientists do not have an
appreciation of the need to use common sense with statistics. As a result, the
scientific literature is full of inappropriate conclusions: For example, “There is no
relationship between domestic violence and social class.” “Lowering the speed
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limit by 5 mph has not changed the accident rate,” “Greater attention to hygiene
makes no difference to the chance of infection.” “Students in large classes do just
as well as students in small classes.” The list is endless. In most cases the data
would have shown the expected relationship between the cause and the likely
effect, despite the bland denials used in the conclusions. The misleading bland
denials are inappropriately justified by the fact that if one wanted to one could
explain the relationships seen in the data by arguing that a chance with prob-
ability > 0.05 came off, which just happened to give the appearance of the
expected relationship. If the actual relationships are very strong and the amount
of data is very large, it is most unlikely that by sheer bad luck we would obtain
such weak data that the relationship seen in the data could be explained away
by appeal to a chance occurring with probability > 0.05. Therefore, statistics
will lead us to appropriate conclusions in such circumstances.

However, collecting data is expensive. Often the amount of data obtained
will not be very large and there is no general rule about the amount of data that
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must be examined before a researcher is able to conclude that there is no
relationship. Many of the examples [ use involve even less data than would
generally be used in research. These examples are used not only to keep cal-
culation simple, but also to emphasize how inappropriate it may be to declare
that there is no evidence when p > 0.05. The issue of the amount of data that
should be obtained is discussed further in Chapter 6 and Chapter 10.

Let us consider another example where Fisher’s exact test could be used.
Say four men and five women are interviewed about butter versus margarine
preference and all the men prefer butter and all the women prefer margarine.

Male Female Totals
Prefer butter 4 0 4
Prefer marg 0 5 5
Totals 4 5 9

Does this provide convincing evidence of gender bias in butter—margarine
preferences? In this example no controversial issues are involved. The starting
point—that there is no gender preference—seems reasonable, though on the
other hand, since women may be more concerned with nurturing and possibly
therefore with health issues, it is possible that women more than men will tend
to avoid butter. We will simply deal with the calculations of the test.

The philosophical shortcomings of the statistical test are not such an over-
whelming issue here, as the starting point seems reasonable. Again, we calcu-
late an answer to the secondary question. That is, we assume for the time
being that there is no particular tendency for men to be butter preferrers, and
using this assumption we calculate the probability that pure chance alone would
lead to the observed result. Here we could regard the four men as four red balls in
the box and the four butter preferrers as the four balls we are choosing from the
box. The chance that just the red balls (the men) would be chosen (to be butter
preferrers) is then p = Y x s x °/1 x '/s = 0.008 < 0.05. (Regarding the five
women as five red balls and the five who are margarine preferrers as five choices
from the box also gives p = /o X */s X /7 X /s x /s = 0.008.) Since both methods
of calculating the p value are valid they must give the same answer. Since p =<
0.05, statistics would tell us we should conclude that the figures give convinc-
ing evidence that gender influences butter—margarine preferences.

In the examples so far the calculations have been easy. However, the calcula-
tions would be much more difficult if our survey of gender and butter—margarine
gave us the result in the accompanying table.
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Male Female Totals
Prefer butter 10 5 15
Prefer marg 10 15 25
Totals 20 20 40

The situation is more complicated here because we don’t have zeros in the
diagonal cells. Here, half the men but only a quarter of the women prefer
butter. How do we calculate the answer to the secondary question now? In
other words, how do we calculate how often this result would arise when only
pure chance, not gender preference, is involved? The complications that arise
when we don’t have zeros on the diagonals are dealt with in Chapter 8, but the
basic philosophical principle behind the calculation is unchanged. For those
who have already come across various statistical tests, we note that another
test called the chi-square or x- test is commonly used in situations similar to
those in which we have used Fisher’s exact test. Again, the philosophical prin-
ciples involved in interpreting the p value are unchanged, but there are slightly
different assumptions involved in the calculation.

APPLICATION OF THE EXTENDED MODIFIED
MULTIPLICATION RULE TO COMBINATIONS

Let’s return to the question of the chance of choosing & red balls from a box
containing k red balls and a total of n balls. As well as being relevant to Fisher’s
exact test, the problem is relevant to other statistical tests. We already have a
mathematical formula for the probability of choosing just the k red balls: From
p-39itis

kxk—-1Dxk-2)x...x3x2x1
Axn=-Dxn-2)x...x(n—k+3)xm-k+2)x(n-—k+1)

Another answer is that there is only one particular set of &k balls that are all red,
but there are a number of other sets of k balls where not all the balls are red. If
k balls are chosen blindly, all possible sets of k balls should be equally likely
to occur. The chance of choosing the k red balls could then be stated as one
way out of all the ways there are of choosing & balls from n balls. The number
of ways there are of choosing & balls from »n balls is given the symbol "C, (the
C is referred to as the combinations symbol; "C, can be pronounced as “n
Choose k7). The chance of choosing the & red balls is then 1/°C,. Equating this
chance with the chance given by the mathematical formula, we have
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1 kx(k-1yx(k-2)x...x3x2x1
"C, nxn-Dxn=-2)x...x(n-k+2)xn-k+1)

Turning the fractions on both sides of the equality upside down gives us the
formula for the number of ways of choosing k objects from a collection of n
objects, "C;:

nxn-NDxn-2)x...xn-k+2)xn-k+1)

rle:
kxk-Dx(k-2)yx...x2x1

Another method of deriving the formula for “C, is given at the end of this
chapter. (Here we use the logic that says that if '/, = /> then x = 2.)

There is an appreciable branch of mathematics dealing with various com-
plexities and relationships satisfied by expressions involving the combinations
symbol. We will give just one: "C, ="C, ,. A one-sentence logical proof fol-
lows. "C, is the number of ways for a teacher to choose k children from a class
of n to stand up; logic dictates that this must be the same as the number of
ways of choosing n — k children to remain seated ("C, _,) with the remainder of
the class (k children) to stand up. For example, there are *C, ways of choosing
five children in the class of twenty-five to stand up with the rest to be seated, and
there are °C,, ways of choosing twenty to sit down with the remaining five to be
standing. Logic dictates that since in both cases the result is all the ways of
having five children standing and twenty sitting down, the number of ways
this can be done must be the same regardless of whether we call it *C, or *C,,.

OPTIONAL

Here is another example of the use of Fisher’s exact test with a solution
using the combinations symbol. Imagine there is a survey of n areas in a na-
tional park; k of them are near a walking track and the others are not. Say that
introduced weeds were found only in the k areas near the walking track. Some-
one might want to argue that this finding is pure coincidence. There are again
two possible choices: (1) It is coincidence, in which case the finding must be
attributed to a 1/'C, chance coming off (there are "C, possible choices of k
areas out of the n surveyed, but just one of those choices consists solely of the
k areas near the walking track); or (2) the relationship between weeds and
nearby paths is not due to chance alone. The decision as to which is the most
reasonable explanation is up to us, but it needs to be guided by the evaluation
of the chance [/7C,. Statistical tradition tells us to believe that option 2 is
correct if 1/°C, turns out to be = 0.05, and otherwise tells us to state that there
is no convincing evidence that option 2 is correct, but this tradition does not
necessarily accord with common sense, so it is important we make up our own
mind. Say n =8 and k = 3; then "C, = 56, and so 1/"C, = 0.05. In this case most
people using common sense would agree with someone making the decision
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solely on the basis of statistical convention. It seems almost certain, given
these figures and using common sense, that weeds in an area have something
to do with proximity to walking tracks.

As well as using the formula for "C|. we can use a direct argument to calcu-
late the chance 1/"C,. We start with the assumption that the distribution of
weeds is due to random chance, but we are aware that three out of eight areas
are infested. Then when we look at the first area close to the track we would
say that it is weed infested because a */s chance came off (three weed areas out
of eight areas in total), when we look at the second area close to the track we
would say that it is weed infested because a /s chance came off (two remain-
ing weed areas out of seven remaining areas), and when we look at the third
area close to the track we would say that it is weed infested because a '/s
chance came off (one remaining weed area out of six remaining areas). The
overall chance is found by multiplying these probabilities: /s x */7 x 'f6 = /56
(formally, we are multiplying out conditional probabilities to get the com-
bined probability).

END OPTIONAL

THE LAW OF TOTAL PROBABILITY

Often we have a population subdivided into groups and we know the chance
of something happening (or the proportion of the time something happens) in
each group. The law of total probability then gives us the overall chance of
that thing happening (or the overall proportion of the time that something
happens).

An important example concerns medical tests. The most accurate medical
tests often involve direct laboratory examination of a portion of the organ that
is affected by a disease. These tests are usually invasive; in other words, they
involve operations and so are expensive and somewhat dangerous. However,
in most cases there are preliminary tests, such as blood or urine tests. based on
effects the diseased organ has on ingredients in the blood or urine. These less
direct indicators of disease are often less reliable. though often these tests are
worthwhile because the disadvantage of reduced accuracy is outweighed by
the benefits of the avoidance of an operation.

The preliminary tests can be unreliable in two ways. They can give the
wrong answer when the person has the disease and they can give the wrong
answer when the person doesn’t have the disease. There are two terms rel-
evant here. The sensitivity of a test is the proportion of the time that a test
gives the correct answer when the person has the disease. The specificity of a
test is the proportion of the time that a test gives the correct answer when the
person doesn’t have the disease. Since all positive preliminary tests (i.e., tests
indicating disease) have to be followed up with more invasive and expensive
tests, it is often of interest to know how many positive preliminary tests will
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arise in any testing program. To do the calculation we have to know the sensi-
tivity and specificity of the test and the proportion of the population that has
the disease. Relating this back to the introductory paragraph defining the law
of total probability, here the groups in the population are those with the dis-
ease and those without, and the sensitivity and specificity let us know the
proportion of time something happens (a positive test) in each group.

Say the specificity of a test is 0.95. This value for specificity is often used in
blood tests where the concentration of some ingredient varies from person to
person. By tradition, those normal people who are unusual enough to have
concentrations in the highest 5 percent are often considered to need further
testing to differentiate them from diseased people who also have high levels.
For brevity, we will summarize this statement by P(T-|[ND) = 0.95 and read
this as the probability that the Test is “—" or negative given No Disease ={.95.
Since 95 percent of those with no disease test negative, 5 percent test positive, so
we can write P(T+|ND) = 0.05. Say also that the sensitivity is 0.8. Then, using
similar notation and reasoning, we write P(T+|D) = 0.8 and P(T-|D) = 0.2. Let
us also say that we are testing a population where 10 percent have the disease.
We write this as P(D) = 0.1 and P(ND) = 0.9. The question, then, is to find out
the proportion of positive tests that result when we test this population.

The answer can be obtained using common sense aided by a diagram (see
Figure 3.1). The proportion who test positive consists of those who don’t have
the disease but test positive and those who do have the disease and test posi-
tive. These proportions are 5 percent of 90 percent and 80 percent of 10 per-
cent, or 0.045 and 0.08, respectively. The overall proportion who test positive
is then 0.045 + 0.08 = 0.125, or 12.5 percent.

The law of total probability here can be stated as follows: The overall prob-
ability of a positive test equals the probability of a positive test, knowing that
there is no disease times the chance that there is no disease plus the probabil-
ity of a positive test knowing there is disease times the chance that there is
disease. In symbols, the law of total probability here can be written as follows:

P(T+) = P(T+|ND) x P(ND) + P(T+|D) x P(D)
0.125= 005 x 09 + 08 x 0.1

The law of total probability can be easily generalized to situations where
there are more than two groups in the population, but we will not be con-
cerned with such situations.

OPTIONAL

As a second example of the use of the law of total probability, say a plane
disappears and it is thought that there is a 1-percent chance that it has crashed
in the sea. If so, there is only a 2-percent chance that it will be found. How-
ever, if it has crashed on land there is a 90-percent chance that it will be found.
What is the overall probability that it will be found?



Basic Probability

49

Figure 3.1

+

80%
positive
of 10%

with
Discase

10% with Disease

In answering this question it is helpful to use obvious notation, such as

90% with No Disease

P(FIS) = 0.02 for the 2-percent chance that it will be Found given that it has
crashed in the Sea. With such notation, the law of total probability gives us
P(F) = P(FIS) x P(S) + P(FIL) x P(L), so the probability that it will be found is
0.02x0.01 +0.9 x 0.99 =0.8912; that is, there is a 89.12-percent chance that

it will be found.

END OPTIONAL
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BAYES’S RULE

In the first instance, Bayes’s rule is just a way of swapping around the events
in a conditional probability statement. Say we know the sensitivity of a medi-
cal test—we know the probability of a positive test for a disease (T+) given
that a person has the disease (D)—but the problem of interest is the probabil-
ity that a person has the disease given that the test is positive; that is, we have
P(T+|D) but we want P(D|T+). From p. 38 we know that P(T + N D) =
P(T+ID)P(D) (recall that the symbol M means “and,” so in words we are stat-
ing that the probability of a person having a positive test and having the dis-
ease equals the probability of a person having a positive test knowing that the
person has the disease times the probability of the person having the disease).
We also know, by symmetry, P(T+ N D) = P(D|T+)P(T+) (in words, the prob-
ability of a person having a positive test and having the disease equals the
probability of a person having the disease knowing that the person has a posi-
tive test times the probability of the person having a positive test), so both
P(T+D)P(D) and P(D|T+)P(T+) equal P(T+ N D). We therefore have

P(D|T+)P(T+) = P(T+D)P(D)
SO

P(T+D)P(D)

P(D|T+) = e

Often the P(T+) in the denominator 1s expressed in terms of the law of total
probability: P(T+) = P(T+|ND) x P(ND) + P(T+|D) x P(D). Using this last equa-
tion gives us Bayes’s rule as it would commonly be written in this situation:

P(T+|D)P(D)
P(T+D)P(D) + P(T+|ND)P(ND)

P(D|T+) =

For example, consider a medical test with a sensitivity of 0.8 and specificity
of 0.95 applied to a population in which 10 percent have the disease. What is
the probability that a person has the disease given that they test positive? The
answer is

0.8 x 0.1 B
0.8x0.1+005x09

P(DIT+) = 0.64

or about %/3. Referring to Figure 3.1, what these calculations are doing is stat-
ing that we know that we are dealing with a positive test so we know that dia-
grammatically we are in the shaded area. Knowing that we are within this
shaded area, we want to know the chance that we are in the left-hand column
constituting 10 percent of the Venn diagram and corresponding to those who
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have the disease. The calculations tell us that about */; of the shaded area is in
the left hand column corresponding to the disease region.

Let us see what would happen if only I percent of the population had the
disease (see Figure 3.2). Then P(D|T+) would be or approximately 0.14 or
about one-seventh. In other words, only about one-seventh of the people who
tested positive for the disease would actually have the disease. The test is
surprisingly inaccurate in this situation because the small proportion of false

Figure 3.2
80%
positive
of 1% —
with
Disease
FHHH
5% positive of 99% with No Discase
1| HHHHHHHHHH
9% with No Disease
1%
with

discase
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positives in the disease-free population who constitute the vast majority out-
weighs the true positives in the tiny minority who do have the disease. In fact,
they outweigh this tiny minority by about six to one.

The issues raised in this medical example are of considerable practical im-
portance. Screening tests for all but the most common of diseases may often
be counterproductive because the costs of the initial screening plus the extra
costs and dangers of the more invasive follow-up testing necessary for those
who are “false positives” (T+|ND), may well outweigh the benefits of detect-
ing the true positives (T+|D).

OPTIONAL

As another example, consider the example of the missing aircraft in the sec-
tion on the law of total probability. What is the probability that it crashed on
land given that it was not found? Using obvious notation, we have P(NF|S) =
0.98, P(NFIL) = 0.1 and P(L) = 0.99. Then

P(NF|L) P(L) 0.1 x 0.99

P(LINF) = =
(LINF) P(NFIL) P(L) + P(NFIS) P(S) ~ 0.1 x 0.99 + 0.98 x 0.01

=0.9099

That is, whereas initially we had the idea that the a priori chance was 99 per-
cent that it had crashed on land, now, with the knowledge that it was not found,
there is about a 91 percent a posteriori chance that it is on land.

END OPTIONAL

The same sort of reasoning can be applied in many other situations. In law
we might know the chance of some piece of evidence (e.g., a particular blood
group) being associated with someone who is innocent and the chance of that
particular evidence being associated with the guilty person. If we also have
some prior estimate of the chance of guilt of the person before the court, then
knowledge of the presence of the evidence can be used to improve our esti-
mate of guilt in a mathematically precise way. Unfortunately, despite several
hundred years of effort by probability theorists, this quantitative approach to
assessing guilt has not generally been taken on by the legal profession.

BAYES’S RULE AND THE ASSESSMENT OF THE
RESULTS OF STATISTICAL TESTS

For our purposes, the most important use of Bayes’s rule relates to its use in
incorporating common sense into assessment of the results of statistical tests.
Let us consider the earlier example of Fisher’s exact test in the case of the
manager who fired all three women in a group of five workers. As we have
seen, although we may want to know whether the manager is sexist, this is not
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the question directly answered by statistics. Instead, statistics tells us that if
the manager was not sexist, we could expect that such a result would happen
with probability 0.1. In other words it would happen by chance alone 10 per-
cent of the time. We then use the convention in statistics that 0.1 is more often
than the “hardly ever” chance of 0.05. The convention then tells us to take a
leap, so we state that the answer to the original question, “Is the manager
sexist?” is that “there is no (convincing) evidence.” Let us see how Bayes’s
rule could allow us to give a more satisfactory answer.

We will assume that if the manager is sexist there is a 100-percent chance
that if he is required to fire three workers he will choose the women workers.
We will also assume that we believe that 40 percent of managers are sexist. In
obvious notation, what we have is P(FW|S) = 1.0 (probability of Firing Women
given Sexist manager = 1). From Fisher’s exact test we have P(FW|NS) = 0.1
(probability of Firing Women given Non-Sexist manager=0.1). We also have,
from our belief, that P(S) = 0.4 (probability of Sexist manager = 0.4), so P(NS)
= 0.6 (probability of Non-Sexist manager = 0.6). We can now use Bayes’s rule
to calculate an answer to the question of interest: Do the figures indicate the
manager is sexist? More precisely, we calculate P(S|[FW) (probability of Sex-
ist manager given Fired Women). Bayes’s rule gives us

P(FW|S) P(S) 1 x0.4
P(S|FW) = : = =~ (.87.
P(FW|S) P(S) + P(FW|NS) P(NS) 1x0.4+0.1 x0.6

In other words, we now have a precise answer. There is an 87-percent chance
that the manager is sexist.

The obvious question here is why not use Bayes's rule all the time, seeing
that it is such a sensible and precise refinement in decision making using sta-
tistics. We will discuss this issue in the context of the example of the women
firings and the manager, though the same ideas apply generally. The answer is
that the use of Bayes’s rule involves some subjective judgments, whereas no
subjective judgments are needed in the calculation that P(FW|NS) = 0.1. The
quest for objectivity led early statisticians to avoid using Bayes’s rule explic-
itly. Instead, it seemed more reasonable to work out objective values like
P(FWINS) and leave readers of the scientific papers to do a rough Bayes’s
rule calculation in their head using their own ideas about values like P(FWIS)
and P(S). Unfortunately, this turned out to be an unreasonable expectation of
the readership of scientific papers. The rather awkward mental assessment of
the implication for P(S|FW) (probability Sexist given Fired Women) of a par-
ticular value of P(FW|NS) (probability Fired Women given Not Sexist), then
became stylized. It became the traditional statistics formula that if P(FW|NS)
=< (.05, then believe S (the manager is sexist) given the event FW (Fired
Women). IfP['FW]NS) > (.05, don’t believe S given the event FW (or at least
state there is no convincing evidence for it). In defense of this frequentist
statistics approach, it should be pointed out that our prior subjective ideas that
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P(S) = 0.4 and P(FW|S) = | are entirely personal. We have only personal
belief to specify that P(S) = 0.4. It may also not be reasonable to assume that
P(FW|S) = 1, since a sexist manager may avoid drawing attention to himself
by firing only two of the women. Different values inserted by different people
will result in different values for P(S|FW).

In many instances calculations using Bayes’s rule can also be much more
difficult. Although, many statisticians favor the use of Bayes’s rule in statistics
(Bayesian statistics) or some related approach, frequentist statistics that stops
at calculating P(FW|NS) is still by far the main approach to statistics. As we
have seen, this frequentist statistics, if it is coupled firmly to a rule like “con-
vincing evidence of S given FW if P(FWlNS) =< (.05, otherwise “no,” often
leads to inappropriate conclusions.

However, if we are prepared to uncouple ourselves from this rule and use
common sense to decide the value of P(FW|NS), at which we become con-
vinced of S given FW, then we can use frequentist statistics wisely. If we
assess the value of P(FW|[NS) in this way we are in effect using a mental
calculation of Bayes’s rule. This does not mean that we literally perform, as
mental arithmetic, the calculations involved in Bayes’s rule. Instead, what is
meant is that we should always ask ourselves after a statistical test which idea
is more reasonable to believe. In the case of the fired women, we should ask
ourselves, “Is it more reasonable to believe that the manger is not sexist but it
just looks that way because a one in ten chance came off when he made a
decision as to which workers should be fired oblivious to gender, or, is it more
reasonable to believe that the manager is sexist?” In other words, to use statis-
tics sensibly, in each situation we should use common sense to decide the p
values that for us would amount to convincing evidence.

In the past this may have been thought to be too much to ask of the reader-
ship of scientific journals. However, the widespread inappropriate use of sta-
tistics in many areas of human activity means that it is important that people
learn to incorporate common sense into statistics. There has been some lim-
ited recognition of the need for this approach. In the past, scientific papers
often just stated that results were “statistically significant,” meaning p was <
0.05. Now most articles in scientific journals quote p values and so potentially
allow the readership to make up their own mind about “statistical significance.”

We will continue to emphasize the importance of incorporating common
sense into statistical decisions. However, in most situations a complete appli-
cation of Bayes’s rule to analysis of statistical tests is difficult. We will there-
fore not explicitly apply the principles of Bayesian statistics to other statistical
tests. Instead, we will emphasize the need to make our own common-sense
value judgments in each situation, about the p values that we can fairly regard
as convincing evidence.

In the previous examples of Fisher’s exact test we have sometimes disagreed
with the conclusions that would have been reached using the traditional p
value benchmark of 0.05 because we have been dealing with situations where



Basic Probability 55

it seemed appropriate to be more easily convinced. For example, in the case of
the manager who fired just his three women workers, my guess is that most
people would think that the man was sexist, particularly after working out that
a manager who ignored gender would have only one chance in ten of sacking
only the women (i.e., p = 0.1). Here, even though p = 0.1 (> 0.05), it would
still be seen in this context as reasonably convincing evidence.

We now come to an example where most people would not be convinced,
even though the p value is much smaller than 0.05. Say the next-door neighbor’s
child claimed to be a clairvoyant. She produces a box containing sixteen iden-
tically shaped balls, three of which are white and the rest red. In particular, she
claims to be able to pull just the white balls out of the box blindfolded. With-
out looking, she chooses three of the balls. In fact, it turns out that she does get
just the white balls. Should we believe that she is a clairvoyant?

Red White Totals

Chosen 0 3 3
Not Chosen | 13 0 13
Totals 13 3 16

There are only two options: (1) result is due to random chance, or (2) result
is due to clairvoyance (we assume that the possibility of a magic trick has
been excluded and the difference between red and white balls cannot be de-
tected by touch). First we work out the size of the chance, assuming that op-
tion 1 is true. Using the same probability rules as before, we see that the
probability of this happening is 1/'°C, = '/seo. If we follow the tradition of
statistics, since '/ss0 = 0.05 we would believe that the child is a clairvoyant.
We should, however, use our common sense to decide which of the two op-
tions is more likely. My own opinion would be that option 1 is far more plau-
sible than option 2. It is my nature to be quite skeptical of phenomena such as
clairvoyance in general, but even those who consult fortune tellers are likely
to be dubious about the abilities in this regard of the next-door neighbor’s
child. Here, although p == 0.002 (< 0.05), most of us would disagree with the
traditions of statistics and not regard this single demonstration as convincing
evidence.

Let us apply Bayes’s rule explicitly to this situation. Say that prior to seeing
the child’s performance we believed that the probability that the child had the
ability of Clairvoyance was one in a million, so P(C) = 0.000001, and so the
probability of Not Clairvoyance or P(NC) = 0.999999. AW denotes the event
All White balls chosen. We have PIAW|NC) = '/s¢0, and we assume that P(AW|C)
= 1. We can then use Bayes’s rule to work out
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P(AW|C) P(C)

= =~ (0.00056
P(AW|[C) P(C) + P(AW|NC) P(NC)

P(C]AW)

That is, we conclude that there is a 0.056-percent chance that the child is a
clairvoyant rather than just lucky. If the child got just the white balls again on
a second go, a repeat application of Bayes’s rule would give her a 24-percent
chance of being a clairvoyant. A third successful go by the child at choosing
only white balls and another repeat application of Bayes’s rule would mean
that I should now believe that there is a 99.4-percent chance that the child is a
clairvoyant, although I would tend to suspect a magic trick.

AN ALTERNATIVE APPROACH TO COMBINATIONS

Number of Possible Arrangements of n Objects

Often probability calculations rely on the idea that it is sometimes reason-
able to expect that all arrangements are equally likely to occur. For example, if
ten names are put in a hat, what is the probability that they will be withdrawn
in alphabetical order? There are ten ways of choosing the first, and for each of
those ten ways there are nine ways of choosing the second, so there are 10 x 9
ways of choosing the first two. For each of these ninety ways of choosing the first
two there are eight possible choices remaining for the third, so there are 10 x 9 x
8 ways of choosing the first three, and so on. We discover that there are 10 x 9
X8 xT7Tx6x5x4x3x2x1ways of choosing all ten names. This number
is denoted 10!, pronounced “‘ten factorial” (it is 3,628,800). Only one of these
ways is alphabetical order, so the chance of alphabetical order is 1in 3,628,800.

As another example, say five countries in a region are ranked according to
their population growth rates and according to their amounts of poverty. It is
found that the two rankings agree completely: Is it reasonable to believe that
this agreement is due entirely to chance? To answer, say we were to blame the
apparent correlation entirely on chance. Then the poorest country would have
a choice of any of the five ranks for population growth, the next poorest coun-
try would have a choice of any of the four remaining ranks, and so on, so that
the number of possible orderings wouldbe 5x 4 x ... x 1=5!=120. There
is only one of these 120 arrangements where the two rankings agree com-
pletely. It is then up to us to decide which is a more reasonable explanation for
the agreement between the rankings. The choices are (1) that there is no un-
derlying reason to explain the connection between the two rankings other than
a /120 chance coming oft, or (2) that there is some underlying reason that
explains why poorer countries tend to be associated with more population
growth.

We still have to make a somewhat arbitrary decision between the two choices.
However, the decision is guided by our calculation of the probability /120 as-
sociated with choice 1. This is another example of a statistical test (in techni-
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cal terms we are testing the null hypothesis that Spearman’s rho is 0, but we
won’t bother with this jargon yet). It should be noted that if (as is reasonable)
we decide to believe that there is an association between poverty and popula-
tion growth that cannot fairly be attributed to chance alone, then we still have
not proven that population growth causes poverty. It may be that poverty causes
population growth, or some other component of the socioeconomic environ-
ment tends to cause poverty and also cause population growth. Probably all
three factors operate to some degree in this situation.

Permutations

Sometimes it is necessary to know how many ways there are of choosing &
objects in a particular order from a group of n objects. This is denoted "P,, and
using the same principles as earlier equals

!

nxn-Hxm-2)x...x(n~-k+1) TR

This is n! with the last n — k factors cancelled out by the division. For example,
say a teacher has a class of twenty students and needs to choose three to be the
class captain, the blackboard monitor, and the representative on the student
council. There are 20 x 19 x 18 =P, ways of choosing a set of three children
for these different jobs. We see that this can be written as:

20x19x18x17x16x15%x...x3x2x1 20!
17x16x15%x...x3%x2x1 _1_7!

There are twenty choices for captain and for each of these twenty choices
there are nineteen choices for blackboard monitor and then for each of these
20 x 19 combinations of choices there are eighteen possible students who
could be chosen as student representative. Note that the situation makes order
important. The first choice, the second choice, and the third choice are not
equivalent. They all get different jobs.

Combinations

Often it is necessary to know how many ways there are of choosing k ob-
jects from a group of n objects when order is irrelevant. For example, three
students are to be chosen for a committee, but they are not going to get differ-
ent jobs as captain, blackboard monitor, and representative just because their
names are selected in a particular order. Drawing out the names Sue, Mary,
and John in that order from a hat containing all the names is counted as the
same as drawing out in order the names John, Sue, and Mary. As stated previ-
ously, the number of ways of choosing & objects from n objects is denoted "C,.
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It can be calculated by reasoning that for each of the “C, choices of k objects,
k! orderings are possible for these objects. This then gives all possible choices
of k objects in order, which is "P,. This tells us that "C, x k! ="P,, so

"P, n!

’IC'A = =
k! ki{(n - k)t

For example, say the teacher in the permutation example thought about
making her choice of students for the three special jobs in the class (captain,
blackboard monitor, and student rep) in the following way: She thought to
herself, “How many ways can [ choose three students from twenty? Whatever
number this is, I’ll call it *C,. Then, for each of these choices I'll bring the
three students up to the front of the class. The three students can be assigned
to the three jobs in 3! ways (three choices for captain and for each of these
choices, two choices for blackboard monitor, and then just one choice for
student rep). All up then there will be *C, x 3! ways of assigning the three
special jobs to the students.” But this *C, x 3! is counting the same number of
arrangements as °P,. Therefore, we have found out indirectly that

. xp, 20!
T3 [7rx 3!

There is just one way of choosing all n children from a group of n children. Our
notation tells us this number of ways is "C,. Therefore we should have "C = 1. The
formula tells us that

n! n!

H J—

"onlxn-nm! ntxO!

Mathematicians define 0! to be 1. The formula

n!

n! x 0!

then makes sense and gives us the required result of 1.

SUMMARY

Probabilities combine according to rules whose logic can be seen from Venn
diagrams. The logical rules can be combined to give more complicated prob-
ability rules. Two are of particular interest:

¢ Fisher’s exact test uses probability rules to work out the probabilities of certain
outcomes when individuals in two groups are assigned at random to one of two
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possible categories. If those in one particular group tend to be assigned to one par-
ticular category and probability rules shows that this outcome has a very low prob-
ability when individuals are assigned at random, it suggests that random assignment
is not the explanation. However, common sense must also be used in each case in
judging whether random chance is still the best explanation.

» Bayes’s rule uses probability rules to combine prior guesses about alternative expla-
nations, and probability calculations about how easily the different alternative ex-
planations can result in the observed outcome, to give an overall probability of
which explanation is correct. In theory. Bayes’s rule can be used to combine p value
calculations and common sense for better decision making.

Use Fisher’s exact test to obtain a p value when dealing with a situation of
two groups and two categories. This is a situation that can be summarized in
the form of the accompanying table.

GroupI | Group II

Category A

Category B

Always use common sense as well as p values in coming to a conclusion
about whether the groups and categories are associated.

QUESTIONS

1. There are cighty women and sixty men in the class. Thirty women and thirty men
own dogs. The lecturer shuts his or her eyes, spins around, and points to a person
at random.

a. What is the probability that the person picked:
i. Is awoman?
ii. Owns adog?
iii. Is a female dog owner?
iv. Is either a woman or a dog owner?
b. Relate your answer in part a to the formula P(E U F)= P(E) + P(F) - P(E N F).

c. In this situation are the events “being a woman” and “being a dog owner”
independent, mutually exclusive, or neither?

2. Human blood can be grouped in several different ways. The rhesus blood groups
(D+ and D-) and the ABO blood groups are inherited independently of each other.
About 14 percent of the population has the rhesus blood group D—, the remaining
having D+, and 3 percent of the population has ABO blood group AB. Inheritance
of AB blood group and O blood group is mutually exclusive; 55 percent of the
population has blood group O.
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8.

a. What proportion of the population has both AB and D-?

b. What proportion has blood group AB or O?

¢. What proportion has blood group AB and/or blood group D-?
d. What proportion has blood group O and/or blood group D+?

According to a news report, one-half of all women and one-third of all men over
the age of seventy suffer from osteoporosis (unduly weak bones). Men make up
one-quarter of this age group. Find the overall prevalence of osteoporosis in people
over seventy (take “one-half” to mean a proportion of exactly 0.5, etc.).

Assume that you are told that 2 percent of children under the age of twelve are
anemic, 10 percent of females in the reproductive years twelve to fifty are ane-
mic, | percent of males in this age group are anemic, and 3 percent of people of
both sexes over fifty are anemic. Also assume that 15 percent of the population is
under twelve and 65 percent are aged twelve to fifty, with equal numbers in both
sexes in all age groups. Find the overall incidence of anemia.

The sensitivity of a medical test is the probability of it giving a positive result
when the patient actually has the disease. The specificity of a medical test is the
probability of it giving a negative result when the patient doesn’t have the disease.
The proportion of people who have the disease in a particular community is 3
percent. The sensitivity of a test for this disease is 96 percent and the specificity is
92 percent.

a. Find the proportion of positive tests that will occur when the population is

tested.

b. What is the probability that a person who tests positive has the disease?

c. Repeat the question if instead of being used as a screening test in a population
with a risk of disease of 3 percent the test is instead used for patients who are
thought to be 95-percent certain to be suffering from the disease.

A judge initially believes that there is a 50-50 chance that the man before him is
guilty. Forensic evidence is then produced that shows that the guilty man has
blood group O. It is known that 50 percent of people in this region have blood
group O and so does the man on trial. What should the judge now believe about
the chance of the man’s guilt?

. A plane has crashed in an unknown location, but it was initially thought that there

was a 40-percent chance (probability 0.4) that it had crashed over the sea and a
60-percent chance it had crashed on land. If it crashed on land there is a probabil-
ity of 0.8 that a search will find it. If it crashed over the sea there is a probability
of 0.3 that a search will find it. A search of land and sea has already been con-
ducted and has failed to find the plane. What is the probability that it crashed on
land? On sea?

a. How many ways can the numbers 1, 2, 3, 4, and 5, be arranged?

b. Five people come into a room in which there is an armchair and a stool. How
many ways can people be seated?

c. Five people come into a room in which there are two identical seats. How
many ways can people be seated?
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d. Two identical jobs are advertised and two women and three men apply. If there
is no sex discrimination or affirmative action, what is the probability that the
two women will get the jobs?

9. A class of ten students has five males and five females. Five students are selected
to give class presentations through the semester. It turns out that only females are
selected. The teacher is questioned about this but denies any sex bias.

a. If the teacher selected students entirely at random, how often would it be that
only girls were selected for presentation?

b. Do you believe the teacher selected the students at random?

c. The class is divided at random into two tutorial groups of five students. What
is the probability that each tutorial group will contain students of one gender?

10. Consider the following table:

First Method of
Categorization

Category 1 Category 11 Totals
Second Method | Category A 5 0 5
of Category B 0 5 5
Categorization
Totals 5 5 10

a. What is the p value?
b. Would you believe that there is an association between the two methods of
categorization if the following are true (give reasons):

1. Category I was not using a light while riding a bicycle at night. Category II
was using a light while riding a bicycle at night. Category A was suffering

a bicycle accident. Category B was not suffering a bicycle accident.

ii. Category I was being born in the first half of the month. Category Il was
being born in the second half of the month. Category A was suffering a

bicycle accident. Category B was not suffering a bicycle accident.

iii. Category I was being a sports enthusiast. Category 1I was being uninter-
ested in sports. Category A was suffering a bicycle accident. Category B
was not suffering a bicycle accident.

c. Repeat parts a and b with the number 5 in the table replaced by the number 2.
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CHAPTER 4

Discrete Random Variables and
Some Statistical Tests Based on Them

Don’t be put off by the chapter title. The material here is no more difficult than
the previous work. Random variables involve just a minor extension of the
ideas in the previous chapter about probabilities of events that might occur.
Random variables arise when the events that have various probabilities of oc-
curring involve numbers. For example, say we examine three students and count
the number of mobile phones they carry (assume that there is at most one mobile
phone per student). We can get any of the numbers 0, 1, 2, or 3 for our result. The
actual number will depend partly on the underlying average number of stu-
dents in the particular social situation at hand who carry mobile phones, but
the number will also depend partly on random chance. The numbers 0, 1, 2,
and 3 in this experiment therefore have various chances attached to them.

In this situation we use the letter X to denote the set of numbers 0, 1, 2, and
3 with chances attached, and we call X a random variable. In other words, X
is used to denote the number of mobile phones we may discover when we
examine three students, and the various values that X can take have certain
chances attached to them. Since when we actually perform the experiment we
have to get just one of the numbers 0, 1, 2, or 3, the sum of all the probabilities
attached to the numbers must be 1. In the example here, X is called a discrete
random variable because the values that X can take are values that are sepa-
rated or discrete from each other. Discrete random variables generally involve
just the whole numbers: 0, 1, 2, 3, 4, and so on. In rather different examples,
the values that can be taken by a random variable may shade into each other.
For instance, in some situations it may make sense for X to sometimes take a
value such as 13.100, to sometimes take a value of 13.101, and to sometimes
take any of the values in between the two previous values. In such cases, X is
called a continuous random variable.
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THE BINOMIAL RANDOM VARIABLE

Let us return to the experiment of examining three students for mobile
phones. Say that the long-run proportion of students carrying mobile phones
is 8. The proportion that don’t carry mobile phonesis d=1-0. (6 and ¢ are
the Greek letters theta and phi, respectively. Many books use the English let-
ters p and ¢ in place of 8 and ¢, but the Greek letters are used here to avoid
confusion with the p in the expression “p value.”) The chance that the first,
second, and third student we examined didn’t have mobile phones would be ¢ x &
x ¢ by the law of multiplication; that is, the chance of getting O mobile phones
would be ¢ The chance of no mobile phone & no mobile phone & mobile
phone would be & x & x 6 = 0. Similarly, the chance of no mobile phone &
mobile phone & no mobile phone would be ¢ x 6 x & = $?6 and the chance of
mobile phone & no mobile phone & no mobile phone would be 6 x ¢ x b = $?0,
so overall the chance of exactly one mobile phone would be 3¢°6. The coeffi-
cient 3 in the expression 3d?0 can also be deduced by reasoning that we have
three slots and must choose one of them to be occupied by mobile phone with
the remainder being occupied by no mobile phone. This choice of one from
three can be done in *C, (= 3) ways (further explanation is given in a later
example). Similarly, the chance of exactly two mobile phones is 3¢$62 and the
chance of exactly three mobile phones is 8°. The discrete random variable X
here is then the set of these possible numbers 0, 1, 2, and 3, together with their
associated chances ¢, 3?0, 3462, and 6°. The discrete random variable X we
have just described is a particular type known as the binomial random variable
based on n = 3 and probability 0. This mouthful is abbreviated as X ~ Bi(3,0).
If we were dealing with ten students, the number of mobile phones we could
get could be any of the whole numbers 0 to 10, inclusive. The random variable
would then be Bi(10,8). In general, if there were # students we would have the
random variable Bi(n,8).

Of course, the idea doesn’t just apply to students and mobile phones. It
applies whenever there are n chances and we count the number of chances that
actually come off. Formally, we say that the idea applies whenever there are n
“trials” and we count the number of “successes.” Extending the reasoning
used in the case of three students, we can see that if X ~ Bi(#,0), the probabil-
ity associated with X taking the value k is "C,8*¢" ~*. We write this as P(X = k)
="C 0*d"*, and these probabilities are sometimes called binomial probabili-
ties. Of course, once we do the examination of the students we get a definite
value: The number of mobile phones is no longer one of a range of numbers
associated with various probabilities. But when we are about to do the experi-
ment, the number of mobile phones we may find is X, a random variable.

OPTIONAL

For example, say X ~ Bi(10,%). Such a random variable would arise if we
were about to perform the experiment of examining ten students and we some-
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how knew that the overall chance that any student had a mobile phone was Y.
Exactly the same random variable would arise if we were about to survey ten
people about a political question and we somehow knew that the chance of a
person giving a favorable response was Y. Let us work out the probability that
X takes the value 4 [in shorthand, P(X =4)]. X takes the value 4 in a number of
different circumstances. Let us denote p for mobile phone and » for no mobile
phone. X takes the value 4 if we get any of the following results:

Result Probability

PPPPRRRANAR VaxVaxVaxVaxYax¥ax¥ax¥ax¥ax¥ = (Yay* x (3%4)°
ppphprnnnn VaxVaxVax¥xVax¥axYax¥hx¥ax¥ = (Vay* x (34)°
ppprapnnnn LaxVaxVax¥ax¥axVaxax¥x¥x% = (Ya)* x (34)°
pppnanpnnn VaxYaxVax¥ax¥ax¥axVax¥axax¥ya = (Y4)* x (35)°
ARRARAPPPP Yax3axVax¥axVaxVaxVaxVaxVaxVs = (Ya)* x (3%4)°

The question that arises here is how many possible arrangements there are
of the letters p and r with four p’s and six n’s. To answer the question, imagine
that we have ten slots laid out in a row. Into four of the slots we have to put the
letter p, with the remaining slots getting the letter n. How many ways can we
choose the four slots? This is the same question in effect as asking how many
ways a teacher can choose four children out of her class of ten. In both cases
the answer is

10!
e, = =210,
41 x 6!

as explained in Chapter 3. Therefore, X takes the value 4 on ¥C, or 210 occa-
sions, with each occasion occuring with probability (V4)* x (34)°. Therefore,
P(X =4)="C, x (4)* x (34)* 0.146.

END OPTIONAL

Note that the probability calculations for the binomial random variable use
the law of multiplication, which is only valid when events are independent.
Therefore the binomial random variable applies only when finding a mobile
phone on one student does not affect our chances of finding a mobile phone
on the next student. This assumption would not be reasonable if all students
with mobile phones tended to stick together and so were likely to be selected
together. In the case of asking a political question, the assumption of indepen-
dence would not be reasonable if we simply asked ten people in one room
their opinion. If people are in one room, they presumably have something in
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common; for example, they may be friends who share similar social back-
grounds, which would tend to color their opinions in the same way. Although
any one person in the room may have a probability of 4 of being in favor,
once we know that one person in the room is in favor, the chances are greater
than V4 that their friends in the same room will also have a similar opinion. In
the extreme case, where people only ever share a room with others who agree
on this particular political question, P(X =0) =3, P(X = 10) = %, and P(X =
any number other than 0 or 10) = 0. In contrast, if there is independence be-
tween the responses of the ten people, P(X = 0) = (34)"" = 0.056, and, P(X =
10) = (44)'" = 0.0000009. When it is not correct to assume independence, the
random variable X is not a binomial random variable.

The Use of the Binomial Random Variable
in Statistical Tests: The Sign Test

Where Does the Name of This Test Come From?

The sign test is the main statistical test based on the binomial random vari-
able. The sign test is used when we want to know if there is convincing evi-
dence of an improvement or deterioration after some intervention has been
applied to each of a number of individuals. The sign test gets its name because
the only information that it uses is the sign of the change after an intervention
(improvement can be denoted as “+7, deterioration as “="). An example will
be used to explain the philosophical basis of the test and the calculation.

Example of the Use of the Sign Test

Say eight people were asked to compare the quality of two nights of sleep
that they had where one of the nights of sleep occurred prior to listening to a
relaxation tape and the other night of sleep occurred after listening to the tape.
Say six out of the eight say that their sleep was improved after listening to the
tape, whereas the remaining two people say the opposite. Does this constitute
reasonably convincing evidence that the relaxation tape helps?

Some Philosophy behind the Sign Test
and Hypothesis Testing in General

If we follow the same principles established in the case of Fisher’s exact
test, the way we use statistics to decide the issue is to weigh two ideas: (1)
“The relaxation tape doesn’t generally help sleep, it just looks that way in this
particular group of people purely because of chance” or (2) “The relaxation
tape does help sleep.” As in the case of Fisher’s exact test, we make our deci-
sion after calculating the chance referred to in option 1. If the chance is very
small, it suggests that option 2 is a more reasonable conclusion.
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However, some more discussion of these ideas is required here, and to fa-
cilitate this discussion some jargon needs to be defined. The idea in option 1,
that the intervention made no difference, is called the null hypothesis and is
denoted H,. The idea in option 2, that the intervention improves the chances of
someone having a good quality sleep, is called the alternative hypothesis and is
denoted H,. In the case of Fisher’s test in the last chapter, we defined a main
question and a subsidiary question. A similar idea applies in the case of the sign
test and statistical tests in general. Using the terminology just defined, the main
question can be rephrased as, “Which is more reasonable to believe, H, or H,?”

In the case of the fired-women example of Fisher’s test, H, was that there is
no association between being a woman and getting fired and H, was that there
is an association. In the case of the sign test, H,, is that the relaxation tape has
no effect on the chance of someone’s sleep after the tape being any better than
their sleep before the tape. If H,, is true and people are forced to decide which
sleep was better, it is a 50-50 chance that they will say either “better” or
“worse””; that is, the probability of “better” is ¥2. H , the alternative hypothesis,
is that the probability of “better” is greater than V2.

However, the main question, “Is it more reasonable to believe H, than H,?”
is not answered directly. Instead, a subsidiary question is asked: “If H, were
true, how often would pure chance alone lead to results like ours that suggest
that H, is true instead?” If the answer is “hardly ever” (where traditionally
“hardly ever” is taken to mean <= 0.05 of the time), then frequentist statistics
tells us that we should leap from this answer to the subsidiary question to a
response to the main question; namely, that there is convincing evidence for
H,. Conversely, if the answer is “quite often” (where traditionally “quite of-
ten” is taken to mean > 0.05 of the time), then frequentist statistics tells us that
we should leap from this answer to the subsidiary question and respond to the
main question by asserting that there is no (convincing) evidence for H. As
has been repeatedly emphasized, this leap, if it is taken without thought and
automatically using the traditional benchmark p value of 0.05, neglects com-
mon sense and inappropriate conclusions may result.’

Contrary to the impression given previously, frequentist statistics does not
regard it as appropriate to assume that H,, is true, simply work out the prob-
ability of getting the observed result, and then if this probability is “hardly
ever” conclude that there is convincing evidence for H,. Why not? The follow-
ing example provides the explanation. Say instead of testing eight people with
the relaxation tape we tested [,000. Say also that 500 people said they slept
better after the relaxation tape and 500 said they slept worse. Clearly, there is
nothing in this result to suggest that the relaxation tape helps. However, let us
calculate the chance of getting exactly 500 out of 1,000 under the assumption
that the tape does nothing for sleep (i.e., the chance of a better or a worse sleep
is 12). Using the terminology defined in the section on the binomial random
variable, we have 1,000 trials, with each trial giving a success with probability
V5. This is the chance that the random variable X = 500 where X ~ Bi(1.000,
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¥4). Using the same ideas as before, this is the probability '%C,,, x (V2)*™ x
(12)°®_This probability turns out to be about 0.025 < 0.05 = “hardly ever” (the
probability is small because lots of values close to 500 out of 1,000, for ex-
ample, values from 480 to 520 will all occur with comparable frequencies and
so the probability of values “near” 500 out of 1,000 is shared out over quite a
few numbers). The result of 500 out of 1,000 then “hardly ever” occurs, but
this result certainly should not be taken as convincing evidence that the chance
of a better sleep is anything other than Y.

The previous example shows that the probability question that must be asked
needs to be more subtle than simply asking if the observed result would “hardly
ever” occur if H, were true. Instead, the probability question asked is one that
at first sight seems rather complex and obscure. The question is, “Assuming
that H,, is correct, how often by pure chance alone would we get results that
look at least as much in favor of the explanation H, as the results that have
actually been obtained?” If the answer is “hardly ever,” we would tend to
believe that H, is a better explanation. In the case of the relaxation tape and the
eight people, six of whom slept better and two of whom slept worse, we would
ask, “If the tape made no difference at all, how often by pure chance alone
would six out of eight or seven out of eight or eight out of eight sleep better
after listening to the tape?” If this answer is “hardly ever,” we should conclude
that we have reasonably convincing evidence for H,. The logic behind this
question is clearer if we state it in reverse. “If it would ‘nearly always’ happen
that if H, were true chance would lead to us getting less than six out of eight
people to say they slept better, then if our observed result was six out of eight
this would be reasonably convincing evidence that H, was true.” Here we take
the probability of “nearly always” to be | minus the probability of “hardly
ever’’; so, using the standard tradition of frequentist statistics, “nearly always”
would mean with probability = 0.95 or at least 95 percent of the time. In other
words, if, assuming “better” or “worse” is a 50-50 choice, and if our probabil-
ity calculations show that more than 95 percent of the time less than six people
out of eight would say “better,” then six out of eight is reasonably convincing
evidence.

Put another way, we take the attitude before the experiment that the number
that we get may lic in two regions. One region consists) of the most typical
value that we would expect if H,, were true and values close by. Values in this
region will not make us change our minds about the assumed truth of the null
hypothesis. The other region is a region of more extreme values that will make
us change our minds. We are then interested in the overall probability of being
in one or the other region, assuming that the null hypothesis is true, but we are
not interested in the probability of individual values.

What is our answer, then, for the particular result here of six out of eight
sleeping better? We calculate the chance of at least six people out of eight
saying they slept better when for each person there is a chance of ¥ that they
will say either “better” or “worse.” Here we have a binomial random variable
situation with eight trials and probability of success = ¥2. The chance of at
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least six out of eight is then the chance that the random variable X =6 or 7 or
8, where X ~ Bi(8, ¥2). Using the same ideas as before, this is the probability
8C, X (V2)0 x (V2)2 + 8C, x (V2) x (V) + 8C, x (V2)! x (V2)° = (V2)* x (*C, + *C, +
8Cy) = 37/256 = 0.14, which is more than the “hardly ever” benchmark of
traditional statistics. This value, 0.14, is our p value. Put another way, if H,
were true we would “quite often” get a result of six or more out of eight by
sheer chance, even though the tape was of no benefit (here “quite often” is
taken to mean a chance of p > 0.05). Traditional statistics therefore says that
there is no (convincing) evidence that the tape benefits natural sleep, or that
the evidence in favor of the tape is not statistically significant (or not statisti-
cally significant at the 5% level). Making (or inferring) a decision on an issue
like this on the basis of such probability calculations is called statistical hy-
pothesis testing or statistical inference.

We emphasize that the numbers in our experiment here are small. With
small numbers, tendencies can easily be explained away as the effects of chance
affecting just a few outcomes. The issue will be discussed further in Chapters
6 and 10. Although experiments will in practice generally involve larger num-
bers, there is no requirement in statistics to use sufficient numbers so that all
tendencies of interest will usually be detected. The use of small numbers in
the experiments discussed here, as well as simplifying calculations, highlights
the common error of concluding that the experiment “proves” there is no ef-
fect when in fact there may well be a worthwhile effect but the numbers in the
experiment were not sufficiently large for it to be unambiguously detected.

A person who was inclined to skepticism and had no knowledge of the
benefits or otherwise of relaxation tapes could reasonably accept the conclu-
sion here based on the 0.05 traditional benchmark. There is some evidence in
favor of the tape if six out of eight say that it helped. But since this evidence
could easily be mimicked by random chance, the evidence is not sufficiently
convincing to entice a skeptical person to spend money on purchasing the tape
unless that person was desperate enough to be prepared to waste money on
something that may well not work.

The Problem of Ties

For the logic behind the sign test to work, we assume here that we don’t
allow people to simply say that the tape made no difference. We don’t accept a
“tied” decision. We insist that no two nights of sleep are exactly the same and our
subjects have got to make a decision about which night was better. If any of our
subjects refuse to make a decision, we ignore that person’s response.

OPTIONAL

It is a philosophical question without an absolute answer whether this ap-
proach to ties is completely reasonable. For example, it may seem reasonable
if we surveyed 1,010 people about the relaxation tapes and ten people refused
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to say better or worse, to then ignore those ten. But what if we surveyed 1,010
people and 1,000 of them said that they couldn’t decide whether the tapes
helped or hindered sleep: Would it be fair to entirely ignore all these responses
and base our conclusions solely on the remaining ten who could make a deci-
sion? There are other possible philosophical approaches to dealing with ties.
One approach involves breaking each tie arbitrarily and doing the p value
calculation, then repeating the process for all possible combination of ways
all the ties can be broken. The average of all the p values obtained is the final
p value. In the pds computer program written to accompany this book the
equivalent of the latter approach is used to deal with ties in the case of statis-
tical tests discussed later in this chapter. However, in the case of the sign test,
the approach of ignoring ties is used.

E Fios 4.
siesifagr S ceg s B an

[t is common for populations to consist of equal numbers of males and
females. Now say that the sex ratio in grey kangaroos had not been studied
before and so we decided to check whether the sex ratio was 50-50. If we
caught four kangaroos and found that only one was male, would we be able to
conclude that the sex ratio in kangaroos tends to favor females? There are two
options: (1) The null hypothesis that the proportion #is 0.5 or (2) the alterna-
tive hypothesis that the proportion isn’t 0.5. To help decide which option I or 2 is
more likely, we pretend at least for the sake of argument that the null hypothesis is
correct. The outcome one male and three female is therefore regarded as a
reflection of chance alone. We ask, “What sort of chance? How often would
we get only one male instead of the two that we would most typically ex-
pect?” As explained previously, it is actually more sensible to alter the ques-
tion slightly: “Normally we would expect two out of four; is the result one out
of four so far away from two out of four that results this way out or further
would rarely occur?” Using the theory of the binomial random variable we
can calculate that we would get the numbers 0, 1, 3, or 4, %/ of the time. So
getting a number at least as far out as one out of four, from the “ideal” of two
out of four, is not at all unusual. Therefore, if 1t was reasonable to start with
the hypothesis 8 = 0.5, there still seems little reason to change our ideas.

If we had examined ten kangaroos and found only one male, we would go
through the same reasoning. This time P(X = 0) = (*2)!” and P(X = 1) =
WC (1) (Y2)° = 10(¥2)"". The calculations for X = 10 and X = 9 are identical to
the calculations for X = 0 and X = 1. So assuming the hypothesis 6 = 0.5 is
true, the chance of being as far as or further than our result of one out of ten
from the ideal result of five out of ten is 2 X (1 + 10) x (12)1Y =22 x (12)"0 =
0.021. This is the p value. We might then prefer to believe that option 2 is
more believable than option . In other words, we might prefer to believe that
the sex ratio in this kangaroo species is not 50-50, but is weighted in favor of
females. Note again the reasoning: It might be 50-50, but if it is, a pretty small
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chance has come off to give us the data that make us doubt the 50-50 idea.
Alternatively, there might be a good reason for the data. It might be this differ-
ent from 50-50 not because a long chance came off, but because there is a
good reason for it to be different, that kangaroos don’t in fact have a 50-50 sex
ratio. Which is the more plausible option is up to us, but we make a decision
that is informed by a calculation. This is the calculation of the probability that,
if the null hypothesis was true, by sheer chance we would obtain data at least
as distant as our data from the most typical value of five out of ten, which the
null hypothesis leads us to expect.

END OPTIONAL

Problems in Applying Bayes’s Rule to the Sign Test

In the case of Fisher’s exact test, after calculating our p value our next step
was to apply Bayes’s rule to incorporate our prior knowledge or common
sense into the decision. We stated at the end of Chapter 3 that we would not
formally apply Bayes’s rule to further statistical tests because calculations
would become too complicated. Let us see why. If the relaxation tapes are of
some benefit, it would not be reasonable to expect that they would work every
time. Chance factors may result in more disturbed sleep for some people after
listening to the tape, even though the tape generally works most of the time.
Application of Bayes’s rule would require that we find out the probability of
the result six out of eight under a range of scenarios from “the tape makes no
difference” probability of V2 to “the tape is almost certain to work™ probability
of nearly 1. We would also need to judge how likely each of the scenarios in
this spectrum was likely to be. Clearly, the Bayesian statistical approach in
this context is going to be difficult. Instead, we “mentally” apply Bayes’s rule.
In other words, we apply a common-sense judgment to our result that the p
value was .14 in the case of six out of eight sleeping better. As stated before,
it would be reasonable for a skeptical person who has no knowledge in the
area of the effects of relaxation tapes on sleep to conclude that the experiment
has not produced convincing evidence. This would not be a reasonable con-
clusion if we were not so skeptical and perhaps common sense or other infor-
mation suggested to us that the tapes could well be of some benefit. If the
tapes were of no benefit the only way to explain a result of more than five out
of eight is to say a 0.14 chance came off. If we already thought that the tapes
might be of benefit, we would sensibly regard this as further evidence in their
favor. It is important to note that the strength of our evidence is based directly
on the p value. In other words, we judge the strength of our evidence by as-
suming H, is true and then asking how often pure chance alone would lead to
outcomes that instead suggest H,_ at least as much as our observed outcome
does. The result “more than five out of eight” is not the immediate fact on
which we base our judgment; it is the p value derived from this tact that is the
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direct evidence. The direct evidence here is that it would only happen 14 per-
cent of the time that pure chance alone would result in an entirely useless
insomnia treatment giving at least as much apparent benefit as was seen in this
experiment.

Using p values rather than actual outcomes as a measure of the strength of
evidence is not only logical, it also enables us to compare the strength of
evidence when we are looking at outcomes that are otherwise hard to com-
pare. For example, which provides the stronger evidence “six or more out of
eight” or “three out of three”? Both results give roughly similar p values. Both
outcomes therefore provide approximately equal strength evidence against H—
something that would not be clear by looking at the outcomes themselves.
Furthermore, without using p values to measure the strength of the evidence,
we would have no way of knowing that four out of four can fairly be regarded
as evidence that is twice as convincing as three out of three.

Note that the smaller the p value, the stronger the evidence against H,. A
very tiny p value generally means very strong evidence against H,. It becomes
less reasonable to attribute results to H, rather than H, when the only way to
attribute the result to H, is to argue that a very tiny chance came off that just
happens by coincidence to make it look like H, is true.

There is no correct conclusion. Statistics can help us make wiser decisions
about situations where there is variability and uncertainty, but there is no method
for always making a correct decision. Personally, if I had insomnia and some
spare money, given the evidence of p = 0.14 I would buy the tape.

Using Numerical Results in the Sign Test

The sign test can be used in situations where the change as a result of an
intervention is not classified simply as improvement or deterioration, but where
actual numerical measures are available for performance before and after an
intervention. For example, say the length of a night of sleep was somehow
accurately measured for people before and after listening to a relaxation tape.
Say that for eight people, A to H, the before and after results in hours and
minutes were as follows:

Person A B C D E F G H
Before  5:37 6:24 4:22 6:53 3:19 5:07 6:48 7:09
After 5:18 6:47 7:01 6:46 7:31 8:08 7:51 8:11

We can summarize some of this information by stating that six people slept
longer after the intervention and two people slept less. We can then perform
the sign test exactly as before on this summary information. However, in do-
ing so we are ignoring some of the original information. In particular, we are
ignoring the fact that the people who had less sleep after the tape had only
slightly less sleep, whereas the people who had more sleep had much more
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sleep. A more sophisticated test using all this information would provide stron-
ger evidence against the null hypothesis.

On the other hand, if we are sure almost every reasonable person would be
convinced by a p value of less than 0.001 and we get the result that ten out of
ten people sleep longer after listening to the tape, there may be little need for
more sophisticated tests using the actual numbers. If H, were true, a result of
ten out of ten would occur only (¥2)" = /1024 << 0.001 of the time (i.e., p value
< 0.001). We have said that in this situation nearly all reasonable people would
prefer to believe that the tapes work rather than believe that they don’t work
and that it just appears that way because a less than 1 in a 1,000 chance came
off. Therefore, in this situation this simple sign test is all that is necessary to
convince most people.

One-Tail and Two-Tail Tests

Consider a researcher who believes in the old saying “a healthy mind in a
healthy body” and who believes that sport improves health. Such a researcher
may wonder whether an after-school sports program improves academic per-
formance. Let us put ourselves in the position of this researcher and say that
we are prepared to believe in H,, that the sports program has no effect on
academic performance, and that we are prepared to stay with this belief unless
we are convinced otherwise by a p value at least as small as the traditional
benchmark value of 0.05. The alternative hypothesis H, here is that sports
programs increase academic performance. Now say that we conducted an ex-
periment by funding eleven students to participate in an after-school sports
program. Say that the result was that nine times out of eleven the student in the
sports program improved in academic performance relative to the remainder
of the students in the class. If H, were true, then we would have a result of less
than nine out of eleven with probability 0.967 and a result of nine or more out of
eleven would occur with probability or p value of about 0.033, since "C,(V2)° x
(1/2)1 + HCM(]/Z)I() 1% (1/2)1 + “CH(I/Z)” X (1/2)() — (I/Z)H(HCQ + HCI() + HC”) = (‘7/1()48 ~
0.033. Given our initial decision about the appropriate p value needed to con-
vince us of H,, we would therefore regard this as convincing evidence for H,.

The initial viewpoint that a sports program might improve academic perfor-
mance may seem unrealistic to some readers. Perhaps many people who dis-
like sports would believe that a sports program would, if anything, distract
from academic pursuits and would therefore, if anything, hinder academic
performance. Consider someone who believes that this hypothesis is possible,
but who is yet to be convinced. If that person did not believe that a sports
program could benefit academic performance but thought it was possible for a
sports program to cause harm, then the sports program and academic perfor-
mance experiment could only involve two possible hypotheses: either H, as
before, that the sports program has no effect on academic performance, or H,
that a sports program decreases academic performance. The result in the ex-
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periment of nine out of eleven in favor of better academic performance for
those in the sports program clearly is not ammunition in favor of an argument
that sports programs detract from academic performance. What would a per-
son conclude, who started off with the belief that most likely there was no
connection between sports programs and academic performance (H,), but if
there was a connection it would have to be that there was a decrease in aca-
demic performance in those in sports programs (H,)? Such a person would
conclude that there is no connection (i.e., H, is true) and that pure perverse
chance had worked to suggest a conclusion opposite to H,. Even though a
conclusion opposite to H, is suggested by the evidence, the person evaluating
the evidence will believe that the explanation for this evidence must be per-
verse chance and not a real effect, because that person believes that a real
positive effect is simply not possible.

A more open-minded person might believe that while H, was a reasonable
starting point, if there was some effect of the sports program on academic
performance this effect could be in either direction. For this person, H, would
be that a sports program affects academic performance, without specifying
the direction of the effect. To see how this affects our statistical reasoning,
recall the philosophical basis for making a decision between H, and H,. We
make the decision after answering the question, “Assuming that H,, is correct,
how often by pure chance alone would we get results that look at least as
much in favor of the explanation H, as the results that have actually been
obtained?” If the answer is “hardly ever” then we would tend to believe that
H, is a better explanation. For the open-minded person, a result of two out of
eleven would be pointing toward H, as much as a result of nine out of eleven
(recall that H, is now that academic performance is associated with the sports
program but the association could be in either direction). Previously we calcu-
lated that 0.967 of the time we would get less than nine out of eleven (i.e.,
0.033 of the time we would get a result at least as large as nine out of eleven).
By symmetry, we see that 0.033 of the time we would get a result at least as
small as two out of eleven (the chance of getting two heads in eleven tosses of
a fair coin must be the same as the chance of getting two tails and so nine
heads). Therefore, 0.066 of the time we get a result outside the range of three
to eight out of eleven. The probability 0.066 is larger than the traditional “hardly
ever” benchmark of 0.05, so if we are using this benchmark we cannot now
say that we have convincing evidence against H,,. Put another way, if H, were
true, 0.934 of the time we would get results that are closer to the 50-50 mark
of five or six out of eleven than the outcome (nine out of eleven) here. How-
ever, 0.934 doesn’t quite amount to “nearly always,” so it is still “reasonable”
to stay with H,even though the experiment gave an outcome outside the range
of between three and eight out of eleven. The word “reasonable” is in inverted
commas in the previous sentence because there is no reason other than con-
vention to take “nearly always™ as at least 95 percent of the time; as always,
we should temper adherence to convention with common sense.
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When H, is that the intervention makes a difference but the difference could
be in either direction, we say that we have a two-tail test. When H, is that the
intervention makes a difference in just one direction, we say that we have a one-
tail test. The example here shows that whether a one-tail or two-tail test is appro-
priate and even the direction of the one-tail test are matters of subjective judgment.
However, often it is clear that a particular intervention can do no harm but may
or may not be of benefit. In such a case a one-tail test is appropriate.

The issue of one-tail and two-tail tests is often given considerable attention
in standard statistical texts, as it is the only area in which some subjective
judgment is needed in traditional statistics. However, it is a relatively trivial
issue compared to the general issue of using subjectivity and common sense
in statistics. Whether the traditional benchmark p value of 0.05 should be as-
sociated with just one end or spread over both ends of the range of possible
outcomes is trivial compared to the issue of whether common sense would
suggest an appropriate benchmark p vatue of the order of a billionth or close to 1.
If common sense is giving us prior information that H,, is almost certainly true, an
exceedingly tiny benchmark p value might be appropriate, whereas if H,, is quite
likely to be incorrect, a benchmark p value close to | is appropriate. Such
issues of common sense may then have far more effect on which outcomes are
going to convince us about H, than the issue of one-tail or two-tail tests.

Sign test calculations are often done by computer and the computer is gen-
erally programmed to give a p value assuming that a two-tail test is appropri-
ate. If instead a one-tail test is appropriate, then it is often appropriate to halve
the computed p value. However, some care is needed. In our example the
computer would have given the p value 0.066 for our result “nine out of eleven,”
meaning that this is how often we would have got any of the results “nine or
ten or eleven out of eleven, or two or one or zero out of eleven” by chance
alone if H, were true. Half this 0.066 is indeed the required p value if H, is that
“sports programs increase academic performance,” for in this case our p value
is the probability of chance alone giving us results that look at least as sugges-
tive of H,, as our result does, and only the results “nine or ten or eleven out of
eleven” are in this category. However. if our alternative to H, was that the
influence of sports programs, if any, must be bad, then our result of nine out of
eleven of those in sports programs doing better gives almost no encourage-
ment for us to believe in H,. We would be more encouraged to believe in H,
that sport is bad for academic performance, if we had got the result zero out of
eleven improved, or one out of eleven improved, or two out of eleven im-
proved, and so on, or even if we had got the result eight out of eleven im-
proved. Results that are at least as suggestive of H_ as our result of nine out of
eleven, then, consist of “nine or eight or seven or six or . . . or two or one or
zero out of eleven.” Calculation shows that such results occur %% 45 of the
time. In other words, the p value is 0.9941. Often it is correct to halve the
computed two-tail p value when a one-tail test is appropriate, but some thought
and common sense are necessary. If the results point in the direction opposite
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to that anticipated by H,, the correct p value will be a number bigger than 0.5,
not half the two-tail p value given by the computer.

The Sign Test and Pairing

The sign test is mainly used in situations in which there are “before™ and
“after” measurements on the same individual. However, the sign test is also
used if there is a method of pairing individuals and one individual receives the
intervention and the other individual doesn’t. The “better” or “worse” com-
parisons of the outcomes between each of the pairs is then used in the sign
test. For example, one child in each of a number of pairs of twins may be
given a possibly beneficial treatment and the treated child can be compared
with the sibling.

The Sign Test, McNemar’s Test, and the Advantages of Pairing

The sign test can be used when there are pairs and where just one of each
pair has the intervention, but the effect of the intervention does not have to be
the classification “better or worse.” Instead of “better or worse,” the measure
on each individual may be in the form of yes or no regarding some other
attribute. In this situation, the sign test is given the name McNemar’s test.
Traditionally in this situation, p value calculations are derived using a differ-
ent philosophical approach, but the calculations are equivalent to those dis-
cussed later in the section on large number of comparisons. McNemar’s test
will be discussed again in Chapter 8.

To explain McNemar's test, consider the following fictitious example. One
thousand families are identified in which there are two children in early grades
of schooling. One child in each family is selected to attend a reading apprecia-
tion course. Twenty years later, all 2,000 children, now in their late twenties,
are followed up and asked if they had attended university. McNemar’s test
compares the answer of each person with their sibling. Where they both had
attended universities or both not attended universities, their answers are re-
garded as ties and are ignored. Interest is then focused on those siblings where
one had attended university and the other didn’t. Under H, that the reading
appreciation course was ineffective at encouraging university attendance, it
should be 50-50 whether it was the sibling who attended or the sibling who
didn’t attend the reading appreciation course who later attended university. If
out of the 1,000 pairs of siblings there were ten such pairs of siblings and in
only one case was it the sibling who had attended the reading appreciation
course who did not attend university, then our p value for a one-tail test is P(X
=0)+PX=1)=")"+"C,("2)'(*2)" = 11(*2)"" = "/124 = 0.01 [here, X ~
Bi(10, 0.5)]. If we thought that it was appropriate to use the traditional bench-
mark p value of 0.05, we would now state that we have convincing evidence
that the course is effective in promoting attendance at university.
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A point to notice here is that most pairs of siblings have been excluded from
our calculations. There are 990 pairs where both siblings had the same experi-
ence of university attendance. This would reflect the fact that family attitudes
toward education would be likely to have a much more important influence on
the lives of young people and their ambition to attend university than the in-
fluence of a single reading enrichment course. Therefore, pairs of siblings
having the same family background tended to either both go to university or
neither go to university. If we had ignored the pairing we could have analyzed
the situation using Fisher’s exact test: There are two groups—those who at-
tended the reading enrichment course and those who didn’t—and two out-
comes—university attendance or not. However, the analysis would be
“muddied” by the 990 pairs or 1,980 people where family factors, not the
reading enrichment course, were responsible for whether they had attended
university. The experiences of the twenty people that the sign test or McNemar’s
test focus on would easily be accounted for in Fisher’s exact test as chance
fluctuations in large numbers. The point is that wherever possible we should
control variability as much as we can in our experiments. In this example,
with McNemar’s test, this is done by pairing so that family factors are similar
for both members of a pair. Pairing should be used whenever feasible to re-
duce natural variability that may obscure the effects of the experimental inter-
vention. Unfortunately, though, pairing is often not possible.

The Sign Test and Testing Medians

The sign test can also be used to test whether figures that have been ob-
tained come from a population with a known median value. For example, say
the median house price in one town was known to be $67,000, and all seven
houses that have been sold in another town (where records of median house
prices are not available) have been sold for more than $67,000. Here, let H, be
the hypothesis that the median house prices in the two towns are the same, and
H, be the hypothesis that the town without records has a higher median house
price. Under H, there is a 50-50 chance (i.e., probability '2) that any house
sold will be either above or below the median. Since seven houses have been
sold above the median, the p value here is (}2)" = /i, and we might well
regard this as convincing evidence in favor of H,.

Using the Sign Test When Numbers of Comparisons Are Large

Clearly the calculations involved in the sign test can be very lengthy if num-
bers are large. Say 65 out of 100 comparisons went one way: Is this reason-
ably convincing evidence that we are not dealing with a 50-50 situation? We
are dealing with a binomial random variable X, with n = 100 and 6 = (0.5. For
a two-tail test we want to know the chance that X is anywhere in the range 0 to
35, inclusive, or in the range 65 to 100. That is, we want
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35 100 35

> C0.50.5)™ F + X C(0.550.5) =2

5
100
k=0 k=065 k=0

C,(0.5)"™.

This would be a horrendous calculation by hand or calculator. There is, how-
ever, a shortcut approximate method. This method is based on the normal
random variable, which will be discussed later. However, such calculations
are usually done by computer (in the pds program written to accompany this
book, simply click on “statistical tests,” then “sign test,” then fill in the num-
ber of favorable and unfavorable comparisons and click “OK™).

OPTIONAL

For example, let’s say that we caught a sample of 100 kangaroos and found
that there were 35 males. Our null hypothesis is again that the sex ratio is 50—
50, with the alternative hypothesis being that it is some other value. The rel-
evant probability calculation is to find out, under the assumption that there is a
50-50 sex ratio, how often we would get results as far out or even further from
the most typical value of 50 males. We are dealing with a binomial random
variable X, with n = 100 and 8 = 0.5. We want to know the chance that X is
anywhere in the range 0 to 35, inclusive, or in the range 65 to 100. As shown,
this chance is

35
227 C(0.5)% = 0.004

k=0

Here, the calculation was done by computer. This is the required probability,
the chance that even though the sex ratio is 50-50, when we catch 100 kanga-
roos at random we will actually find that the number of males is so far from
the 50-50 mark that they are actually somewhere in the range 0 to 35 or 65 to
100. We have found that this chance 1s about 0.004, or 1 chance in 250. If we
really did obtain such data we would probably think it more reasonable to
believe that we were not dealing with a population with a 50-50 sex ratio, rather
than believe that our out-of-kilter data are the reflection of a 50-50 sex ratio to-
gether with a | in 250 chance. To put it another way, if the null hypothesis had
been true, at least 249 out of 250 times we would have got a value closer to
50-50 for the number of males than the result 35 males out of 100. Therefore,
it is reasonable for the result we got, 35, to make us doubt the null hypothesis.

END OPTIONAL

A word of caution: For these calculations to be valid, the independence
assumption underlying the binomial random variable must be satisfied. For
example, say female kangaroos tended to stay together in an area and we
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sampled 100 kangaroos in that area. A result of 65 females might not be at all
unusual, even though over the whole country the sex ratio is 50-50. Independence
would not be satisfied in this situation. If as we sample, we find that there is a
higher than expected proportion of females, it makes it likely that we are look-
ing in an area where females congregate. If we continue to look in the same
area, it is more likely than 50-50 that our next kangaroo will also be female.

Other Statistical Tests Based on the Binomial Random Variable

Sometimes we have some idea of what the long-run proportion 0 is likely to
be, based on theory or experience. We can then use our knowledge of bino-
mial random variables in a statistical test to help us decide if our ideas are
correct in the current case. For example, for theoretical reasons (Mendelian
genetics) some genetic attributes called recessive attributes will occur with
probability % in each of the offspring of a particular mating pair. Say we
observed cight offspring and five had the attribute. Does this mean that the
attribute is not being passed on as a recessive in this case (i.e., does this mean
that 6 # %4)? We note here that since, according to the laws of Mendelian
inheritance for recessive genes, each offspring gets the attribute with prob-
ability % and there are eight offspring, then on average we would expect two
out of the eight to have the attribute, not the five that were observed. As in
Chapter 3, it is not possible to answer the main question, “Is this attribute
inherited with 6 = %47 directly unless we use Bayesian statistics together with
a priori estimates of how often alternative forms of inheritance occur. Instead,
we provide an answer to the secondary question, “If 6 was %4, how often would
we get results at least as far out as five out of eight?”” and we use the answer to
this secondary question to guide us in making a decision about the main ques-
tion. For simplicity, we assume that H_ is that 6 > Y4. Our p value, the prob-
ability of getting five or more out of eight when the proportion is actually Y%, is
SCL(VAY X (%) + FCy(V4)" X (%) + 5C(VA)T X (34)! 4 Cy(V4) X (%)= " ™Wys 530 =
0.027. If we thought that it was appropriate to use the traditional benchmark p
value here of 0.05, we would decide that we had convincing evidence of H,. In
other words, since it “hardly ever” happens that we get aresult at least as high as
tive out of eight when the true proportion is %4, then this result is convincing evi-
dence that the true proportion is more than Y4. As noted previously, this state-
ment may make more sense expressed in an opposite way: If the true proportion
is Y4, we “nearly always™ get results of four or less out of eight; since this
didn’t happen, we have convincing evidence that the true proportion is not V4.

However, such statistical tests based on the binomial distribution with 0 % ¥
are not commonly used. The sign test, where 0 = Y2, is used more commonly.
Taking 6 = Y2 represents the null hypothesis that better/worse or yes/no or male/
female are 50-50 propositions. The example with 6 7 Y2 was given to show how
statistical tests can be based on any random variable appropriate to the situation.
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IMPROVEMENTS ON THE SIGN TEST: USING ORDINAL
INFORMATION AND THE WILCOXON SIGNED RANK TEST

Motivation

Consider the example of the night of sleep for eight people. The only way
the numerical information was used was to classify outcomes as “better” or
“worse.” Clearly it should be possible to use the actual numerical changes in a
more refined test. One such test that is often used (and is perhaps not quite so
often used appropriately) is called the 1 test. This will be covered in the next
chapter with some additional theory. In this section we will cover the Wilcoxon
signed rank test, which doesn’t use the numerical changes themselves, but
uses their rank or order.

Explanation by Example

The test is best explained by an example. Consider again the example con-
cerning the length of sleep with and without a relaxation tape. The results of
hours and minutes of sleep are reprinted here with three extra rows. The first
additional row is the difference between “before” and “after.” The next row
records the relative size or rank of the differences in the previous row, with a |
representing the smallest difference and an 8 representing the largest differ-
ence. Signs are ignored in working out these ranks. The last row records the
signs that were attached to the differences:

Person A B C D E F G H
Before 5:37 6:24 4:22 6:53 3:19 5:07 6:48 7:09
After 5:18 6:47 7:01 6:46 7:31 8:08 7:51 8:11
Difference 19 +23 +2:39 -7 +4:12 +3:01  +1:03  +1:02
Rank 2 3 6 1 8 7 5

Sign - + + - + + +

As with the previous statistical tests, we have two alternatives: Hy, that the
intervention doesn’t prolong sleep, and H_, that the intervention does prolong
sleep. Our primary question is, “Which is more reasonable to believe, H, or
H,?” In other words, our primary question is, “Does the relaxation tape really
work, or does it just look that way in this particular group because of chance
alone?” As previously, we do not actually ask this question directly, but in-
stead we find a precise answer to the secondary question: “If H, were in fact
true, how often would pure chance alone lead to results that are at least as
suggestive of H, as the outcome observed here?” In other words, the second-
ary question is, “If we are going to put the favorable results from the tape
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down to pure coincidence, what sort of coincidence are we dealing with?” If
the answer is that we must be dealing with the sort of coincidence that “hardly
ever” occurs, we conclude that that it is more reasonable to believe H,. In the
sign test, we judged whether the results were suggestive of H, by p value
calculations after simply counting the number of times we got the outcome
“better” rather than “worse.” With rank information we can do better. We look
at the sum of all the ranks that are in favor of “better” or the sum of all the
ranks that are in favor of “worse” (the total of these two sums is simply the
sum of all the numbers between | and 8 [= 36], so once we know one sum we
know the other). It would suggest that the intervention generally resulted in
improvements if there were very few “worse” outcomes, and where “worse”
outcomes did occur they were only slightly worse but when “better” outcomes
occurred they were much better. This means that the intervention is suggestive
of general improvement if the sum of the negative ranks is close to () or the
sum of the positive ranks is close to the maximum value of 36. Let us return to
our secondary question: “If H, were in fact true, how often would pure chance
alone lead to results that are at least as suggestive of H,_ as the outcome ob-
served here?” If H, were true and we measure eight differences, the ditfer-
ences will receive the rankings 1 to 8 and each of these differences will be
equally likely to be positive or negative.

We could get the sum of the negative ranks to be 0 if by chance all ranks
were attached to a positive sign: Since under H,, there is a 50-50 chance whether
any difference is positive or negative, we see that we get the sum 0, (/2)® of the
time. We could get the sum of the negative ranks to be 1 if by chance all but
the rank 1 were attached to a positive sign and the rank 1 was attached to a
negative sign: Since under H,, it is a 50-50 chance whether any difference is
positive or negative we see that we get the sum 1, (12)” x (Y2)' = (42)® of the
time. Similarly we get the sum of the negative ranks to be 2, (12)* of the time.
However, there are two ways of getting the sum of the negative ranks to be 3:
Either we attach a negative sign to the rank 3 alone [this will happen by chance
(2)® of the time], or as in our data, we attach negative signs to both the ranks
1 and 2 [this will also happen by chance (/2)* of the time].

Altogether, we see that assuming H,, that pure chance alone is operating,
the sum of the negative ranks is 3 or less, 5 x (42)* = /25 = 0.02 of the time.
This is our p value. If we thought that it was appropriate in the circumstances
to use the traditional benchmark p value of 0.05 or any other benchmark above
0.02, we would conclude that we have reasonably convincing evidence that
H, is true. Again, the logic of the argument here is perhaps best understood if
expressed in the negative. If H, (i.e., chance alone) was all that was involved,
we would “nearly always” get a value for the sum of the negative ranks bigger
than 3. Since we did not get a value bigger than 3, the alternative explanation—
that the outcome is not just due to pure chance, but that the relaxation tape
works—is a more convincing explanation.
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Practicalities of Using the Wilcoxon Signed Rank Test

In the example, this test can be seen to be based on a random variable that
can take values from 0 to 36 with various probabilities. However, it is actually
quite difficult to work out all these probabilities, particularly when the num-
bers of comparisons are large. Unlike the case of the binomial random vari-
able, there is no relatively simple formula for the probabilities here. The pds
computer program written to accompany this book does the exact calculations
when numbers aren’t large; otherwise, it uses an approximate method. Other
computer programs may use the more easily computed approximation even
when numbers are small, and the approximation is quite inaccurate.

The p value calculated by the program assumes a two-tail test. In our previ-
ous example the program would give a p value of 0.04 with the sum of ranks
of 3, since under H, the sum of negative ranks or the sum of positive ranks
would be 3 or less about 0.04 of the time. It is appropriate here to divide this
figure by 2 to get the p vlaue for a one-tail test. A one-tail test applies to our
example because we are comparing sleep without any intervention with sleep
after an intervention that might increase sleep but certainly wouldn’t tend to
reduce sleep. If instead we compared two different interventions that might
promote sleep—say two different styles of relaxation tapes—a two-tail test
would be appropriate. The two-tail H, would be the hypothesis that one tape is
superior to the other but we’re not sure which. As in the case of the sign test,
some thought is required. If a one-tail test is appropriate but the results point
in the opposite direction to that expected by the alternative hypothesis, halv-
ing the computed p value would be wrong; the p value in such a case would be
greater than (.5. The computer program deals with the problem of any ties in
the differences, using the principles described in an earlier section of this chap-
ter, on pages 69-70.

USING ORDINAL INFORMATION IN UNPAIRED
SITUATIONS: THE MANN-WHITNEY TEST

Motivation

Instead of comparing pairs of measurements, we often have measurements
on unrelated individuals in two separate groups. We may then want to know if
there is reasonably convincing evidence that the outcomes in the two groups
are so different that the differences cannot reasonably be blamed on pure chance
alone. We can already deal with this situation using Fisher’s exact test. How-
ever, to use Fisher’s exact test the outcome measured has to be to whether an
individual belongs to one of two categories. If the outcome is a number, we
could apply Fisher’s exact test by categorizing the numbers as above average
or below average. Clearly, though, we would be ignoring a lot of the informa-
tion generated by the experiment if the only information we used was whether
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the outcome was above or below average instead of using the actual figures.
There are methods of using the actual numbers directly in a statistical test.
These methods will be discussed later. Here we will deal with the Mann-
Whitney test. This test, like the Wilcoxon signed rank test, uses rank informa-
tion rather than the actual numbers. Again, explanation will be by example.

Explanation by Example

Say we were interested in the relationship between gender and mathemati-
cal ability. T would guess that most people in our society would think that a
reasonable starting point would be to stay with the belief H, that girls and
boys are equally good at math unless we come across convincing evidence to
the contrary. The alternative H, would reasonably be taken to be that girls may
be more talented at math than boys or vice versa. In other words, a two-tail
test would be considered reasonable (a male chauvinist, however, may con-
sider a one-tail test with H, being that boys are superior to girls to be the
appropriate alternative hypothesis). Let us now assume that we have some
results that point to one gender being superior in math. As previously, our
main question is, “Which is now more reasonable to believe, H, or H,?” Once
again, statistics cannot give a direct answer to this question and instead an-
swers a subsidiary question like, “If H,, were true, what is the chance that by
pure coincidence we would get our results that just happen to make it look like
H, is true?” As discussed in the case of the sign test, the subsidiary question is
actually a little more complicated than this. It is, “If H, were true, what is the
chance that by pure coincidence we would get results that just happen to make
it look at least as much in favor of the explanation H, as the results that have
actually been obtained?”

Let us now assume that we perform an experiment to test our ideas on gen-
der and math ability and we obtain the marks of six boys and four girls of
similar ages on the same math exam (we assume that our sample of boys and
girls is a representative sample as discussed near the beginning of Chapter 2).
Let’s say that we obtained the following results:

Boys 63 72 45 48 27 51
Girls 9% ol 88 86

These marks can now be combined and arranged in ascending order, with the

[P L}

prefix “b” representing the mark for a boy and “g” for a girl:
b27 b45 b48 b5l g6l b63 b72 g8 g8 ¢£96
Dropping the marks, we can simply write bbbbgbbggg.

If H, is true, any arrangement of the six b symbols and four g symbols can
occur. In fact, all possible arrangements of the six b symbols and four ¢ sym-
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bols are equally likely. From Chapter 3 we know there are '°C, = 210 ways of
positioning four g symbols into ten slots with the remaining slots being occu-
pied by b symbols. Most of these arrangements will have the b symbols and
the g symbols pretty well interspersed, though a few arrangements will tend to
have most of the b symbols at one end and most of the g symbols at the other.
These latter arrangements, though, are in favor of H,. In particular, the ar-
rangement that we obtained suggests that the girls are better than the boys. We
now want (o ask the subsidiary question, “If H, were true, what is the chance
that by pure coincidence we would get results that just happen to make it look
at least as much in favor of the explanation H, as the results that have actually
been obtained?” Before we can ask this question, though, we have to be able
to define precisely what we mean when we say that have most of the b sym-
bols at one end and most of the g symbols at the other. What we do is come up
with a rule that gives a number that is O if all the b symbols are at one end and
all the g symbols are at the other (bbbbbbgggg), gives a number that is small
where there is a strong tendency for the b symbols to be at one end and the g
symbols to be at the other (as in our current results), and gives a much larger
number when the symbols are well interspersed (e.g., gbbgbbgbbg or
ggbbbbbbgg). Once we have such a rule, we can sensibly ask the subsidiary
question in this form: “If H, were true, what is the chance that by pure coinci-
dence we would get an arrangement that using the rule gives a number at least
as small as the number obtained from our results?”

The rule that has been devised is to look along the arrangement bbbbgbbggg
and for each b symbol that occurs to count the number of g symbols to the left
of it. Here the rule will give 0 + 0+ 0+ 0+ 1 + 1 =2. We can do the same thing
interchanging the roles of the g symbols and b symbols. This will give 4 + 6 +
6 + 6 =22. The rule goes on to tell us to take the smaller of these two numbers,
and traditionally we call this number U. The smallest out of 2 and 22 is 2, and
so the rule finally gives us U = 2 as a measure of the extent to which most of
the b symbols are at one end and most of the g symbols are at the other. By
contrast, the arrangement gbbgbbgbbg gives U = 12 (counting the number of
g symbols before each b symbol gives I + 1 +2+2 +3 + 3 = 12 and counting
the number of b symbols before each g symbol gives 0 +2 +4 4+ 6 =12, and 12
is the smaller of the two numbers 12 and 12). We now ask how many of the
210 possible arrangements of four g symbols and six b symbols give a value
of 2 or smaller. Let us list some of the 210 possible arrangements together
with their U values: bbbbbbgggg (0), bbbbbgbggg (1), bbbbbggbgg (2),
bbbbbgggbg (3), bbbbbggggb (4), bbbbgbbggg (2), bbbbggbbgg (4). Trying
out all 210 arrangements we find that only bbbbbbgggg, bbbbbgbggg,
bbbbbggbgg, bbbbgbbggg, ggggbbbbbb, gggbgbbbbb, ggbggbbbbb, and
gegbbgbbbb have a U value of 2 or less. This is 8 arrangements out of 210
possible arrangements. Under H,,, each arrangement is equally likely, so if H;
is true, coincidence alone will lead to a result at least as much in favor of one
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gender as our results here only 8 out of 210 times. Our p value is then ¥/, or
0.038. Using the traditional benchmark of 0.05 to be the upper limit of “hardly
ever,” we could say that if H, were true, then, although a result of U =2 is
possible, we would “hardly ever” obtain such a result and so it is more reason-
able to believe H,.

In practice, a declaration that one gender was intellectually superior in some
respects could have major social implications and for this reason I personally
would look for more convincing evidence before declaring to the world that
girls are superior in math. After all, the evidence that we have could instead be
explained by an 8 in 210 chance coming off. In coming to a conclusion, as
well as weighing up the relative likelihoods of H; and H,, it is also reasonable
to take into account the costs of incorrect conclusions.

Sometimes an equivalent test to the Mann—Whitney test is referred to as the
Wilcoxon rank-sum test, but this name can lead to confusion with the Wilcoxon
signed rank test.

Practicalities of Using the Mann—-Whitney Test

In the example, the test can be seen to be based on a random variable that
can take values from 0 to 12 with various probabilities. However, as in the
case of the Wilcoxon signed rank test, it is actually quite difficult to work out
all these probabilities, particularly when the amount of data are large. There is
no relatively simple formula for the probabilities here as there is for the bino-
mial random variable. The pds computer program written to accompany this
book does the exact calculations when numbers aren’t large; otherwise it uses
an approximate method. As in the case of the Wilcoxon signed rank test, the p
value calculated by the program assumes a two-tail test and, with the precau-
tions discussed on pages 75-76, it may be appropriate to halve this p value
where a one-tail test is appropriate. Again, ties in the orderings are dealt with
using the principles described in the section on ties in the sign test on pages 69-70.

OTHER DISCRETE RANDOM VARIABLES AND
ASSOCIATED STATISTICAL TESTS

So far we have covered three discrete random variables. In other words, we
have covered three situations in which there is a particular pattern of chances
spread out over a range of whole numbers. These random variables are the
binomial random variable and the discrete random variables associated with
the Wilcoxon signed rank test and with the Mann-Whitney test. In fact, there
are an unlimited number of random variables, since there are an unlimited
number of ways of dividing up probabilities between various numbers. How-
ever, just a few discrete random variables are particularly useful and are given
names. We will look at just one other discrete random variable.



86 Statistics with Common Sense

The Poisson Random Variable

The binomial random variable applies to situations in which there are n
independent “trials” with probability 6 of “success” at each trial, giving a
possible number of successes of 0, 1, 2, ..., n. We can’t get more than n
successes in # trials. Often we deal with situations in which there is no theo-
retical upper limit to the number of successes. For example, we may know
that on average there are three beetles of some particular type per square kilo-
meter of habitat. We may then reason that since there are 100 hectares in a
square kilometer, the chance of finding a beetle in any hectare is about 0.03.
The actual number of beetles (rather than the average three) in the whole square
kilometer would then be approximately given by a binomial random variable
based on 100 lots of 0.03 chances (i.e., X ~ Bi[ 100, 0.03]). Using the rules for
the binomial random variable. we would be able to work out the probability
that there were O or 1 or 2 or 3 or4 or 5Sor...or 100 beetles in the square
kilometer.

But why stop at dividing the square kilometer into hectares? Working with
square meters (1 million to a square kilometer), we would have the total number
of beetles approximately given by X ~ Bi(1,000,000, 0.000003) and could simi-
larly work out the probability that there were Oor l or2or3ord4orSor...or
1,000,000 beetles in the square kilometer. Mathematically this process can be
taken to the limit of an infinite number of infinitesimal chances but arranged
so that the average remains three beetles per square kilometer. It turns out that
the rule becomes

L, 3

PX =k =

where ¢ is the number close to 2.7183. Note that all the derivation of the rules
that we have gone through up to now are understandable by anyone with some
high school math and a logical mind. However, the reason for the rule just
given requires further mathematics. This is true of most of the rules from now
on, but the principle remains that these probability rules follow from basic
logical principles.’

If, on average, we expect X\ beetles per square kilometer the rule becomes

Ne™?

k!

PX = k) =

This random variable is known as the Poisson random variable (note that if
k is O the rule will contain the expression O!. This is taken to be 1. Also note
that any number to the power 0, like A", is also 1). The Poisson random vari-
able applies to many situations in which the outcome may be any of the num-
bers 0, 1, 2, 3, 4, and so on without any upper limit. It applies at least
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approximately in a huge range of situations: number of gold nuggets in a patch
of ground, number of typo errors in a book, number of hurricanes in a given
period of time, number of customers walking into a shop, number of patients
walking into a casualty ward, or number of telephone calls received in a given
period of time. As it is derived from a binomial, it is implicitly assumed, as in
the binomial, that the occurrence of one event is independent of the occur-
rence of all others. This is reasonable for short telephone calls. It would not be
reasonable for long telephone calls, as one telephone call might interfere with
the reception of other calls. It would also not be reasonable for beetles, unless
they were solitary.

If we know that the probability of finding a certain number k of gold nug-
gets in a certain area is

Ae ?

k!

3

then the same principles that led to this rule show that the probability of find-
ing k gold nuggets in twice this area is

(2)\)A -2\

K

{provided the extra area is the same type of gold-nugget-bearing country as
the original area). The principle extends in an obvious way, so that if we were
dealing with, say, 2.56 times the original area, we would get a rule telling us
our chances of getting any particular number of nuggets by replacing A in the
formula by 2.56 x A.

As well as being used to deal with questions purely concerning probability,
the Poisson random variable can be used in statistical hypothesis testing. For
example, say long-term records show that a town experiences one destructive
hurricane every fifteen years. How unusual would it be for the town to have at
least three destructive hurricanes in the next ten years? As it stands, this is just
a probability question and we will go through the workings shortly. However,
in ten years time if there had been three destructive hurricanes we may be
interested in whether this experience could fairly be regarded as convincing
evidence for an increased hurricane frequency. Other knowledge tells us that
any increased hurricane frequency would be due to the greenhouse effect. Our
H,, then, is that the greenhouse effect has not had a perceptible effect on hur-
ricane frequency over the ten years, and H, is that it has. Note that we have the
same philosophical framework as before. What we really want is an answer to
the primary question, “Are the increased hurricanes due to a change in climate
(presumably) from the greenhouse effect, or have they occurred purely be-
cause of some unlucky coincidences?” We cannot answer this question di-
rectly. Instead, we answer the secondary question, “If we are going to put the
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frequent hurricanes down to unlucky coincidence, what sort of coincidence
are we dealing with?” If the answer to this secondary question is that it is the
sort of coincidence that “hardly ever” occurs, then we infer that the most rea-
sonable answer to the primary question is that the frequent hurricanes are due
to the greenhouse effect. Using the reasoning discussed earlier in this chapter,
the relevant coincidence is not just the chance of three hurricanes, but the
chance of three or more.

To start this problem, we need to know the X\ to put into the rule for the
chances for various numbers of hurricanes in ten years. Since we expect on
average one hurricane per fifteen years, we expect on average 2/3 hurricane
per ten years, so A = 2/3. We want to know the chance of three or more hurri-
canes. We could use the Poisson probability rule to calculate the chance of
exactly three, exactly four, exactly five, exactly six, and so on. To get the right
answer for “three or more™ we would have to keep going forever. However,
“three or more™ is the same as “not zero, one, or two.” We can therefore find
the probability of zero, one, and two, add them up. and subtract from 1 to give
the probability of “three or more.” The calculation then is

[(fm“e-% Cl)'eh  (Ch)y e-%] y [(ﬁm" ()" (%)i]
1 - + =1l-eh

+ + +
0! 11 2! 0! 1! 2!
=1—eh(1+Y+Y).

A calculator shows the probability is about 0.03.

Note that the Poisson probability rule we have used may in fact not be
appropriate, as like the binomial rule it implicitly assumes that hurricanes oc-
cur independently of each other. The Poisson probability rule would not be
appropriate if, for example, as a result of an imaginary variant of the el Nifio
effect, we always had no hurricanes for forty-four years and then in the forty-
fifth year we always had three. We would still have on average one hurricane
every fifteen years, but we would get three hurricanes in a decade whenever
the decade covered the forty-fifth year, which would happen by chance /s = 22
percent of the time (compare this with the probability of 0.03 or a 3% chance
assuming hurricane numbers follow a Poisson random variable). In general,
remember that calculations based on the Poisson random variable implicitly
assume that the events, hurricanes, gold nuggets, whatever, occur at random,
totally independent of each other. Often we can only make an educated guess
about whether this assumption is reasonable. Presuming the assumption is
reasonable, we go on to answer the primary question, “Do we believe that the
excessive number of hurricanes is due to the greenhouse effect?”” Here we also
must make a judgment. Which is the more reasonable option to believe: (1)
the greenhouse effect hasn’t influenced the town’s hurricane frequency, it just
might seem that way as a result of a 3 percent chance coming off (H,). or (2)
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the greenhouse effect has increased the town’s hurricane frequency (H,)? There
is no right answer, only a judgment, but a judgment that is informed by the
probability calculation that gave us the p value 3 percent.

Statistical tests based on the Poisson random variable are less commonly
used than the sign test based on the binomial random variable, the Wilcoxon
signed rank test, and the Mann—Whitney test, each based on their own special
random variables. In fact, there is no name for the test given in the previous ex-
ample other than “‘a statistical test based on the Poisson random variable.” Nev-
ertheless, the Poisson random variable comes up reasonably often in statistics.

SAMPLES, POPULATIONS, AND RANDOM VARIABLES

We have discussed random variables because of their role in statistical tests.
They are also used in statistics in a somewhat different context. Random vari-
ables are used in the study of what a sample can tell us about a population.

In a sample, each value we obtain is chosen from a population. For ex-
ample, we might have a sample of women recording the number of children
each has, and with a sample of size 4 we might get a set of values {0, 1, 0, 3}.
Each value is chosen from the values for the entire population of women. The
collection of values for the entire population of women could be summarized
as a collection of several billions of the numbers 0, 1, 2, 3, ..., 30 (if 30 is the
maxtmum number of children possible). Each of the numbers 0 to 30 occur in
a certain proportion of the population. Choosing a value from this population
is similar to choosing a value from a random variable which takes the values
0,1,2,3,...,30 with probabilities equal to the proportions in the population.

In the theory of statistics, we can think of the sample as a set of values
obtained from a random variable rather than a population. This abstraction is
useful because it allows some desirable simplification. A random variable is
usually fully specified by a couple of numbers, or parameters, inserted into a
short mathematical formula. The probabilities specitied by an appropriate ran-
dom variable might then give a close match to the proportions in the popula-
tion. On the other hand, describing the population without this simplification
would require us to estimate many proportions. In the example here we would
need to estimate thirty-one proportions, the proportion of women who have
zero or one or two or . . . or thirty children. Even a sample of thousands would
contain very few women with more than twenty children, so many of the thirty-
one proportions required to describe the population could not be accurately
estimated. The method of using the sample to directly estimate the propor-
tions would be inefficient because it fails to take into account that there is a
pattern in the proportions to be estimated; for example, that past a certain
number of children (the mode) the proportions of women with progressively
more children tail off. The information in the sample is used more efficiently
if we use the sample to estimate the couple of parameters in the mathematical
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formula that, at least approximately, describe all thirty-one proportions. In-
stead of dealing with the actual population, we are then dealing with a theo-
retical description of the population by a mathematical formula that specifies
the chance that a woman chosen at random will have a certain number of
children.

In the theory, then, we often think of the population as equivalent to a ran-
dom variable. Being interested in the data because of what they tell us about
the population is then the same as being interested in the data because of what
they tell us about the underlying random variable that describes, at least ap-
proximately, that population. The theory underlying much of statistics is then
based on what samples can tell us about the underlying random variables.

When we were dealing with summarizing data we defined the mean, or
simple average, as one of the measures of where the data were centered, and
the standard deviation as a measure of how spread out the data were. Now we
are interested in the data for what they tell us about the population, and we
have seen that this is equivalent to saying that we are interested in the data for
what they tell us about the random variable that describes the population. It is
therefore natural to ask how well the mean of the data and the standard devia-
tion reflect where the underlying random variable is centered and how spread
out it is. This raises the question of what we mean when we ask the question,
“Where is a random variable centered and how spread out is it?” The defini-
tions of center and spread for a sample can’t be directly applied to a random
variable. A random variable is a set of all the possible numbers that might
occur, with various probabilities attached. The method of calculating the
mean—adding all the values that actually have occured and dividing by the
number of values—can’t be applied directly to random variables.

Expected Value

The equivalent of the mean for a random variable is called the expecration
or expected value of the random variable. It is the average of the numbers that
might occur, but it is an average that also takes into account the probabilities
of the various numbers occurring. The quick way of saying this is to say that it
is a probability-weighted average of all the values that can occur. In math-
ematical symbols, if the possible values of the random variable are x,, x,, x,
X4 . ... x, and these values occur with probabilities p,. p,, ps. ps - . . . P,
respectively, then the expected value is x; X p, + X, X py + X3 X Py + X, X p, + .
..+x,xp,. The expected value of a random variable is often given the symbol
u. For example, consider the random variable X ~ Bi(3, '2). This takes the
values 0, 1, 2, and 3 with probabilities '/, */s, /s, and '/, respectively. The
expected value is then 0 x "5+ 1 X Vs + 2 x /s + 3 x /s = 1%2. For example, the
expected number of heads when a fair coin is about to be tossed three times is
14, Likewise, the expected number of girls when a woman anticipates having
a family of three children is 1%2.
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Variance and Standard Deviation

The variance of a random variable is the probability-weighted average of
the squared deviations from its expected value. If the values of the random
variable that can occur are x|, x,, X3, X,, . . ., x, and these values occur with prob-
abilities p,, p», Py Pus - - - 5 P,» tespectively, and the expected value is p, then the
variance is (x, — ) X p, 4+ (G — ) X py+ (=) X pi+ (g - X p,+.. .+
(x, — n)* x p,. For example, consider again the random variable X ~ Bi(3, 2).
The variance is (0 = 1V2)> x s + (1 = V2P x s + (2 = 1Y)’ x /s + (3 — 1V5)* x
'/ = %. The standard deviation of a random variable is the square root of the
variance and is often given the symbol o.

Expected Value and Standard Deviation of the
Binomial and Poisson Random Variable

[t can be shown that the expected value of a binomial random variable is
x 8. This is reasonable; it says that in some sense the average of what you
would expect when you take n chances with each chance having probability 0
of success 1s 1 x 0 successes. For example, if the sex ratio of some species was
50-50 (6 = 0.5) and you examined ten individuals, you would expect five
individuals to be female. If you looked at eleven individuals the expected num-
ber of females would be 5.5. The expected value doesn’t have to be a whole
number, even though the random variable may only take whole number val-
ues: The average number of children had by Western women is about 1.7,
although no woman has exactly this number of children.

It can be shown that the expected value of a Poisson random variable is .
This is reasonable, as A was used as the long-run average in the derivation of
the rule for a Poisson random variable. The details of the derivation are be-
yond the scope of this book.

It can be shown that the standard deviation of a binomial random variable
based on # trials with chance 9 of success each time and a chance b =1 -9 of
failure is . n8¢. For a Poisson random variable itis | A. Again, the details of the
derivations are beyond the scope of this book.”

Best Estimates

We now return to the question of how well the mean and standard deviation
of the data in a sampie reflect the expected value and standard deviation of the
underlying random variable. For example, is the sample mean the best esti-
mate of the expected value that the sample can give us? Perhaps the median of
the sample might be a better estimate? There is no answer to such questions
that is true for all random variables. However, for most of the random vari-
ables mentioned in this book (the lognormal mentioned in Chapter 5 is an
exception). the mean and standard deviation of the sample are the “best” pos-
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sible indicators of the expected value and standard deviation of the underlying
random variable.

OPTIONAL

This raises yet another question: What do we mean by “best”? There are a
number of ways in which we can define “best.” In many situations it turns out
that the mean is the best estimate of the expected value of the underlying
random variable according to all reasonable definitions of “best.” The stan-
dard deviation

PIRE

i=1

n—1

is the “best” estimate of the standard deviation o of the underlying random
variable in one sense, but the formula

i(x, - x)

i=1

n

gives an estimate that is “better” in another sense. In most situations the first
formula is more appropriate. However, it is common for scientific calculators
to have separate buttons for automatic calculation of both. The button for the
first formula is commonly labelled s or o, |, and this quantity is properly
called the “sample standard deviation,” and the button for the second formula
is commonly labelled o or ¢,. In practice, unless n is small there is very little
difference between s and o,. The former is used to estimate standard deviation
in the rest of this book.

Returning to the question of what we mean by “best,” there are several
criteria that are used in deciding which formula gives a better estimate. For
example, one criterion is that if we were to take many samples and use the
formula on each sample to make an estimate, then the average of the many
estimates should be the true value. Another criterion is that it we make many
such estimates, the scattering of these estimates around the true value should
be as narrow as possible.

END OPTIONAL
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SUMMARY

Random variables are sets of numbers with chances attached.

The binomial random variable applies when the numbers are the numbers of suc-
cesses out of the number of independent trials.

The most important application of the binomial random variable is to the sign test,
where our starting point is that we have a 50-50 chance of success in each trial.
The main application of the sign test is to situations in which we ask whether an
individual is better or worse after an intervention.

The sign test can also be applied to pairs where one of each pair gets the interven-
tion. In this case it is sometimes known as McNemar’s test.

Ties are ignored in the sign test.

A p value is not the chance of getting our particular result if the null hypothesis, H,,,
1s true. It is the chance that if H, is true we would get a result at least as suggestive
of H, as the result we actually obtained.

A one-tail test applies if we believe the effect of the intervention could only possibly
be in one direction. If the etfect of the intervention could be in either direction, we
have a two-tail test.

The Wilcoxon signed rank test applies to the same situations as the sign test, but
applies when we have more information than just “better” or “worse.”

The Mann—Whitney test applies when there are two groups and there is enough
information to allow the outcomes of al! the individuals to be ranked in order.
Random variables are also convenient simplified representations of populations. The
sample mean estimates the expected value of the random variable that represents
the population. The sample standard deviation estimates the standard deviation of
the random variable that represents the population.

In short, statistical tests covered so far are designed to help answer the ques-
tion, “Is there a difference?” This question is asked in various contexts ac-
cording to the source of the data and the different types of data:

Dichotomous (e.g.,

Source of data better or worse) data Numerical data
Two related measures (e.g., Sign test Wilcoxon signed rank
measures before and after an test

intervention on the same
individual; measures on one
twin who had an intervention
and the other twin who didn’t)

A single measure on two Fisher’s exact test Mann—Whitney test
unrelated samples (e.g.,

measuring the same quantity

on men and women)
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QUESTIONS

. Ten asthmatics were asked to compare the effect of salbutamol and fenoterol sprays

in relieving their asthma attacks. Assume that salbutamol and fenoterol are equal

in terms of effectiveness and side effects in all people, so that the preferences

expressed are simply the reflection of a 50-50 random choice.

a. With this assumption, what is the probability that (i) zero people prefer fenoterol
to salbutamol? (ii) one prefers fenoterol? (iii) two prefer fenoterol? (iv) three
prefer fenoterol? (v) four prefer fenoterol? (vi) five prefer fenoterol?

b. How low would the number prefering fenoterol to salbutamol have to be be-
fore you would believe that the results are not simply due to random chance
but that salbutamol is a better drug? (Note there is no “right” answer.)

. It has been claimed that a small machine that releases negative ions into the air in

the bedroom enhances natural sleep.

a. Ten people try the machine for one night and nine say that they slept better and
one person says she slept worse. Do you believe that the presence of the ma-
chine enhances sleep?

b. If thirteen people had tried the machine and nine had slept better, one worse,
and three didn’t find any difference. would you believe that the presence of the
machine enhances sleep?

c. If one-hundred ten people had tried the machine and sixty-five had slept better,
thirty worse, and fifteen didn’t find any difference, would you believe that the
presence of the machine enhances sleep?

Say that in your local hospital at present there are twenty patients with broken
legs. Sixteen are male and four are female. Do you believe that there 1s a general
tendency for more men than women to be hospitalized with broken legs? (As-
sume that the sex ratio is 50-50 in your community.)

On two occasions, 1,200 people each run races against a stopwatch. On one of the
occasions each person does some mental arithmetic exercises just prior to the
race but does not do so on the other occasion. Say 700 people ran better after
mental arithmetic. Assuming mental arithmetic is entirely irrelevant to physical
performance, use a computer to calculate how often you would expect to get re-
sults at least this far out from the value of 600 out of 1,200 (the value most likely
if mental arithmetic exercises are entirely irrelevant to physical performance). If
you obtained this result, would you be reasonably convinced that prior mental
arithmetic assists racing performance?

. A tour company runs a twenty-four-seat bus. Knowing that 25 percent of people

don’t keep their booking, they only regard their twenty-four-seater as “fully booked”
when they have twenty-eight booked on the tour. However, they will occasionally
be caught out by this policy and have to pay compensation when more than twenty-
four people on a “fully booked” tour do arrive to take their seats. In what propor-
tion of “fully booked” tours will the company be required to pay compensation?

a. Assume the tour company caters entirely to individuals who make their choice
whether to proceed with the tour independently of each other.
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b. Assume that all the tourists are traveling in family groups, with four in every
family. Each family is independent of the other families, but if one member of
a family can’t come on the tour neither do any of the others in that family.

6. Students arc randomly assigned to receive individual tuition from teacher A or
from teacher B. The marks of students attending teacher A are compared with the
marks of students attending teacher B on a standard test. The marks for the A
group are 75, 84, 63,42, 91, 87, 69,73, 78, and 56. The marks for the B group are
89, 80,47, 68.96,92, 78,74, 61, 83, 79, and 88.

a. Perform an appropriate statistical test to determine whether there is convincing
evidence that the effectiveness of the two teachers is different.

b. Would your conclusions change if instead of individual tuition the scenario

involved two classes for the two groups of students taught by teachers A and B?

7. A group of people who regularly search the beach for lost valuables using metal

detectors are asked to compare two different brands of metal detectors: brands A

and B. The time in minutes for each person to find an item of value with each
metal detector is recorded.

Person 1 2 3 4 5 6 7 8 9 10
Brand A 317 181 47 3021 1 61 38 23
Brand B 19 15 176 93 6 48 26 108 57 29

Use a statistical test to decide whether there is reasonably convincing evidence
that the two brands of metal detectors are not of equal effectiveness.

8. On average, a surgeon sees three cases of acute appendicitis each week. What is
the probability that over the next week the surgeon will see zero, one, two, three,
four, and seventeen cases?

9. On average a hematologist sees two new cases of acute myeloid leukemia each
year. What is the average number of cases seen in three months? What is the
chance the hematologist will see exactly four cases or four or more cases in the
next three months? If, in fact, the hematologist does see four cases in the next
three months, should he or she conclude that there is likely to be some new envi-
ronmental factor responsible for these cases?

NOTES

1. This may happen if the amount of data examined by researchers isn’t sufficiently
large, the expected trend is not quite as strong as anticipated, or by sheer bad luck the
data obtained turns out to be less convincing than it would normally be. The researcher
may then have data that points in the appropriate direction but not in a completely
convincing way. If statistics shows that chance alone could relatively easily explain
the data (p > 0.05), then unthinking researchers would conclude that there is “no evi-
dence” for the expected and observed trend. For example we may find statements that
there is “no evidence™ violent video games promote violent behavior, that there is “no
evidence” that exercise promotes longevity, that there is “no evidence” that in-service
training improves professional standards, and that there is “no evidence™ that intensive
fishing decreases fish stocks. Other examples in the same vein were given in on page 43.
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2. Those interested in the derivation here should look up the derivation of the expo-
nential function in an algebra textbook for senior high school or introductory univer-
sity students (for example, Durell, Advanced Algebra, p. 128) and should also look up
the Poisson distribution in an introductory probability theory book (such as Ross, A
First Course in Probability Theory, p. 129). A bibliography can be found at the end of
this book.

3. See Rice, Mathematical Statistics, pp. 111-113, or Ross, First Course, pp. 246—
248, for the derivations.



CHAPTER 5

Continuous Random Variables and
Some Statistical Tests Based on Them

Often data consist not of whole numbers but of values picked from some-
where over a continuous range. For example, data on the height of men would
consist of values mostly picked from somewhere in the range 5' to 6'6". The
important point is that the values are not generally separated from each other
by whole numbers. If one man is 5'7.0000” tall, the next talleer man could be
57.3062" tall. Since values are not necessarily separated by any fixed amount,
the possible range of values is said to be continuous.

When data were in the form of whole numbers they could be regarded as
the outcome of a random variable that took whole number values. Such ran-
dom variables—discrete random variables—were discussed in Chapter 4. In
Chapter 4 we dealt with the binomial random variable, the Poisson random
variable, and the random variables associated with the Wilcoxon sign rank test
and the Mann—Whitney test. We used the theory of these random variables to
work out probabilities concerning our data and this led to decisions about
hypotheses.

Data that consist of values from anywhere on a continuous range can be
regarded as the outcomes of a different sort of random variable: a continuous
random variable. Continuous random variables are a little harder to under-
stand. They still comprise a set of numbers with chances attached, but because
there are an infinitude of close-by numbers, no single number can have a finite
probability attached to it. Instead, we think of the density of probability around
values of interest. Probability is smeared out over a range of numbers, but the
density of the smear varies. For example, it makes no sense to ask the prob-
ability that a person is 170 cm tall, for nobody is exactly 170 cm tall if we take
this to mean 170.0000000 c¢m tall and not 170.01386294 c¢cm or any other
number very close to 170.0000000 cm. However it does make sense to say
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that the probability density for human height at 170 cm is 0.05 per cm, mean-
ing that about 5 percent of people are between 170 ¢cm and 171 ecm. The about
is italicized because the 0.05 probability density applies only right at 170 cm.
By the time we get to 171 cm the value may be something a little different, so
the 0.05 probability per cm figure won’t usually apply across the whole centi-
meter from 170 cm to 171 cm. The situation is a bit like speed: At a given
instant a bicycle may be traveling at 5 meters per second, but if its speed is
changing it will not cover exactly 5 meters in the next second.

Graph of speed against time
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The situation is perhaps clearer with a graph. Say we have a graph consist-
ing of a horizontal axis along which the various possible heights of humans
are marked, with a curve above describing the distribution of human heights
(see page 99). This curve is called the probability density function for human
heights if the area under the curve, between two heights of interest, is the
proportion of people between those two heights. Equivalently, the area under
the curve between two heights of interest is the probability that someone cho-
sen at random from the population will be between the two heights.

We will deal with two related continuous random variables: the normal ran-
dom variable and the lognormal random variable. The distributions of many
continuous measurements that can be made in nature approximate either the
distributions of the normal or lognormal random variables. The normal ran-
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dom variable arises when a large number of chance occurrences add together
to give the whole. For example, height is determined by many factors added
together. The factors include genes affecting the Iength of the various bones
and nutrition before birth and during childhood, which in turn is the sum of
many meals: All these influences add together to determine final beight. The
probability density function for human height is displayed here and shows a
characteristic “bell-shaped” appearance. This is the shape of the probability
density function of the normal random variable or the “normal probability
density function” or the “normal curve.”

Graph of probability density against height
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The lognormal random variable arises when a large number of influences
are multiplied together. For example, the lognormal random variable describes
the distribution of grains of sand on the beach. This random variable is the
result of multiple splits from a larger rock. As discussed later, the final grain
size is in some sense the result of multiplying together the eftects of each split.

THE NORMAL RANDOM VARIABLE
Origin
It is a remarkable fact that the result of adding many, many, small chance
contributions together gives almost the same underlying pattern of numbers

and probability density as make up the normal random variable, almost re-
gardless of the way chance is attached to each contribution. For example, con-
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sider an animal that is equally likely to get zero, one, two, or three meals on
any given day. Let’s say the animal will grow 0.0 mm that day if it receives
zero meals, 0.1 mm if it receives one meal, 0.2 mm if it receives two meals,
and 0.9 mm if it receives three meals. The end result in terms of the animal’s
length in adulthood after several years will be a particular pattern of lengths
and probabilities. This pattern can be closely approximated by a bell-shaped
probability density function of a normal random variable. However, any dif-
ferent pattern of meal probabilities and meal-related growth per day would
give an almost identical pattern of lengths and probabilities for the adult ani-
mals. For example, if the probabilities of zero, one, two, or three meals in a
day were instead '/, /s, /o, and /s, respectively, and the day’s growth as a
result of these meals was instead 0.0 mm, 0.3 mm, 0.6 mm, and 0.9 mm,
respectively, the pattern of probabilities and lengths of the adult animal would
be almost identical. The only differences would be in the position and spread
of the approximating probability density function. No matter what the prob-
abilities are for the various number of meals and no matter what the growth is
for each meal, the end result would still be the bell-shaped probability density
function of a normal random variable. This bell-shaped probability density
function of a normal random variable satisfies a certain mathematical for-
mula. The formula is a bit complicated and involves two parameters (a param-
eter is a dummy letter that can take the place of any particular figure in a
formula, like the 0 in the formula for the probabilities of the binomial random
variable). It turns out that one of the parameters in the formula gives the loca-
tion of the center, the expected value, of the normal random variable. This
parameter is usually given the symbol y, the traditional symbol for the ex-
pected value of a random variable. The other parameter gives the amount of
spread of the probability density function as measured by the standard devia-
tion. This parameter is usually given the symbol o, the traditional symbol for
the standard deviation of a random variable.

Notation

The shorthand for stating that the random variable X is a normal random
variable centered on u and with measure of spread (i.e., standard deviation) ¢
is X ~ N(u, o?) (there is a slightly confusing convention to use the symbol for
variance, a2, rather than the symbol for standard deviation, o, in the notation
here). Such a random variable X can take any value from minus infinity (~)
to infinity (¢), but values more than two or three times o away from p are very
rare (95% of the time a value from a normal random variable will be within 1.96 x
o of p). If we are dealing with a situation in which the data that we have obtained
consist of a scattering of values that are all particular outcomes of the same normal
random variable X ~ N(u, o?), we say that our data follow a normal distribution
or that our data are normally distributed with mean p and standard deviation
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o. The expressions “X is a normal random variable,” “X has a normal distribu-
tion,” and “X is normally distributed” all have the same meaning.

The Central Limit Theorem

The remarkable fact that the end result of the addition of a huge amount of
randomness generally results in a particular pattern of probability density en-
tirely specified by just two parameters can be proved using advanced math-
ematics. This result is known as the central limit theorem. In fact mathematicians
have been so fascinated with the central limit theorem that they have produced
a number of different proofs. The simplest proofs apply when the chance ef-
fects are all of a similar tiny size and occur independently of each other. In the
case of the length of an animal and the number of meals that it gets each day as
it grows, the simple proof that the end result should be a normal distribution
would apply only if two assumptions are true. These assumptions are that the
chances concerning meals and growth each day are the same every day and
that having a certain number of meals and growth one day has no effect on the
chances for meals and growth the next day. There are more complex proofs
that show that even when these assumptions are not strictly true, the end result
is often still a normal distribution.

Central Limit Theorem Exceptions

The proofs are not valid in all cases. The exceptions include situations in
which common sense would indicate that there would be limitations to the
randomness. For example, in the case of the animals growing according to
whether they had zero, one, two, or three daily meals, if there was extreme
dependence between the meals for each animal so that any given animal al-
ways got the same number of meals every day, then clearly the adult animals
would all end up as one of just four possible sizes (depending on whether we
are dealing with an animal that got zero or one or two or three meals each day
throughout its life) rather than ending up as a scattering of sizes following the
pattern of the normal random variable. The proof, that the end result of addition of
a lot of randomness is a normal distribution, is also not valid when some of the
chance effects are much larger than others. For example, despite the contrived
example in a previous section, human height is not distributed exactly as a
normal random variable, because two chance effects—whether we are deal-
ing with a male or a female, a child or an adult—have a much larger effect on
height than how much a person got for breakfast on some particular day of
their childhood. However, the height of adult humans of one particular gender
is distributed much closer to the ideal of a normal random variable. If some of
the chance effects multiply or combine in other ways rather than simply add,
the end result may also not closely resemble a normal distribution.
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OPTIONAL

Finally, as a mathematical curiosity, there are certain unusual random vari-
ables or patterns of numbers with probabilities to which the central limit theo-
rem doesn’t apply. No matter how many such random variables we choose
independently and sum, we never approach the pattern of a normal random
variable. One such random variable is known as the Cauchy random variable.
It applies if we mount a laser pointer on a horizontal wheel near a long straight
wall, spin the wheel at random, and record the position of the light on the
(infinitely) long straight wall when the pointer comes to rest pointing to any
part of the wall. While the pointer will more often point at parts of the wall
close by, extreme values are not uncommon. It turns out that the extreme val-
ues are sufficiently common to prevent the mean of a number of such out-
comes averaging out toward the more common values.

END OPTIONAL

For most of the remainder of this chapter we will assume that in all the
examples we are dealing with data that are normally distributed. The last sec-
tion of this chapter discusses modifications required when we are dealing with
the real world, where not all continuous data are normally distributed.

Calculations Based on the Normal Random Variable:
The Standard Normal Random Variable Z

An unfortunate aspect of normal random variables is that there is no neat
formula giving the exact amount of probability between any two points. How-
ever, approximate calculations of probabilities can be done using computers
or statistical tables, and these calculations are simplified by using the follow-
ing idea. The simplitying idea starts by noting that all normal curves have the
same basic shape, they “look the same.” and mathematically they are the same,
except that they can differ in where they are centered, y, and how spread out
they are, o. The amount of area (probability) under the curve between two
points on one curve is exactly the same as the area between the two equivalent
points on any other normal curve.

What do we mean by equivalent points? Say we wanted to know the prob-
ability of obtaining a value between 0 and | standard deviations to the right of
the mean from a normal random variable centered on p with standard devia-
tion o. In particular, say we knew that the mean height of women is 5' 6" and
that the standard deviation is 3". Our question then becomes, “What is the
probability that a woman chosen at random will have a height between 5' 67
and 5'9"7” The answer is that the probability of such a value is the same as the
probability of obtaining a value between 0 and 1 standard deviations to the
right of the mean from any other normal random variable. In particular, if we
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use as a standard the normal random variable centered on O with standard
deviation ¢ = 1, then the probability of being between 0 and ! standard devia-
tions to the right of the mean is the same as the probability of being between 0
and [. The standard normal random variable is therefore defined as the normal
centered on 0 with measure of spread (or standard deviation) 1. It is usually
denoted Z, so in symbols, Z ~ N(0, 17).

Probabilities concerning any normal random variable can therefore be re-
lated to probabilities concerning the standard normal random variable, and
these probabilities can be obtained from tables or a computer. In particular,
the pds program shows that the probability of a value between 0 and | from a
standard normal distribution is 0.3413, so this is the probability that a woman
chosen at random will have a height between 5' 6" and 5'9". Equivalently, we
can say that 34.13 percent of women are between 5' 6" and 5' 9". Note that the
pds program doesn’t give us this answer in a completely direct way. Instead, if
we click on “statistical function,” then click on “normal,” and then type 1”7 in
the box “z value,” we get the answer that there is a probability of 0.8413 of
obtaining a value less than | from a standard normal distribution. Equiva-
lently, 84.13 percent of values are less than 1. The standard normal distribu-
tion is symmetrical around the value 0, so that 50 percent of the time we get a
value less than 0. Therefore, if we deduct the 50 percent of values that are less
than O from the 84.13 percent of the values that are less than {, we find that
34.13 percent of values are between 0 and 1 (see Figure 5.1).

Sometimes it will be convenient to turn to tables of the standard normal
random variable rather than turn on a computer program. These tables can be
designed in various ways, but often show just probabilities of being less than
a certain number of standard deviations to the right of the mean. Such a table
is included as the appendix to this book. We may need to use symmetry to
obtain the probabilities that we are interested in. For example, say we were
interested in the chance that a woman chosen at random was between 5' 2147
and 5' 5%”. Since the mean is 5' 6", we see that 5' 5147 is 34” below the mean.
Since the standard deviation is 3", we see that this 34” 1s ¥4 or 0.25 standard
deviations to the left of the mean. Likewise, 5' 2% is [.25 standard deviations
to the left of the mean. The required probability is then the probability of a
value between 0.25 and 1.25 standard deviations to the left of the mean. This
is the same as the probability of a value between —0.25 and —1.25 on a stan-
dard normal curve. By symmetry, this is the same as the probability of a value
between +0.25 and +1.25 on a standard normal curve. In turn, this is the prob-
ability of being less than +1.25, take away the probability of being less than
+0.25. To look up the probability of being less than +1.25, turn to the Appen-
dix, go down the page until you come to the 1.2 label in the left-hand most
column, then move across the 1.2 row to the column headed 5. The entry here
is 8943, indicating that the required probability is 0.8943. Likewise, the prob-
ability of being less than 0.25 is 0.5987. The required probability of being
between 0.25 and 1.25 is then the difference between these two probabilities,
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Figure 5.1
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0.2956. In other words, if it is true that the mean height of women is 5" 6" and
women’s heights are normally distributed with a standard deviation of 3", then
the probability that a woman selected at random is between 5' 214” and 5' 5%4”
is 0.2956. Equivalently, 29.56 percent of women are in this height range (see
Figure 5.2).

More generally, if we want to find the probability of a normal random vari-
able X ~ N(u, 0?) taking a value between a and b, we find out how far each of
a and b are from p in terms of units of standard deviations, o, and find the
probability of being between each of these many units from zero in the case of
the standard normal random variable. In particular, the distance between a
and u is & — p, and measured in terms of standard deviations rather than in the
original units this distance represents

a-u
a

standard deviations. Likewise, b is

b—p

g
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Figure 5.2

Equal Areas
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standard deviations from p. The probability of X being between a and b is then
the same as the probability of the standard normal random variable Z being
between

a-p\ b—u

and
o a

In effect, we deal with probability calculations by turning the normal ran-
dom variable X, centered at p and with standard deviation o, into a standard
normal random variable by taking away u from all the values X and dividing
by . In symbols,

where Z is the standard normal random variable.
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Examples of the Use of a Normal Random Variable

. What is the probability of obtaining a value of less than 1 from a standard normal

random variable? It helps to refer to a diagram of the normal distribution, such as
Figure 5.1. The probability required here is denoted by all the area under the
curve to the left of +1 standard deviation. This value is given directly as 0.8413 by
the pds computer program, as explained in the first example of the previous sec-
tion. Similarly, looking up the value corresponding to z = 1.0 in the table in the
Appendix shows the probability 0.8413. Therefore, there is about an 84 percent
chance that a value obtained from a standard normal random variable will be less
than 1.

What is the probability of obtaining a value of less than 1.645 from a standard
normal random variable? The answer can be obtained directly from the computer,
as previously described. If using the Appendix table, go across the row z = 1.6
until you get to the column headed 4. The entry here tells us that the probability of
a number less than 1.64 is 0.9495. The next entry on the right under the column
headed 5 tells us that the probability of a number less than 1.65 is 0.9505. We can
then “interpolate” and conclude that the chance of getting a value that is less than
the halfway point between 1.64 and 1.65 is halfway between 0.9495 and 0.9505,
or 0.9500 (95%).

. What is the probability of obtaining a value between —1.96 and +1.96 from a

standard normal random variable? From the table we see that 97.5 percent of the
time we get values below z = 1.96. Therefore, 2.5 percent of the time we get
values above this. By symmetry, 2.5 percent of the time we get values below —1.96.
Therefore, we get values in the range —1.96 to +1.96, 95 percent of the time.

. If the distribution of the weights of adult humans is described by a normal random

variable with mean 70 kg and standard deviation 10 kg, what proportion of people
are between 50 and 90 kg? Asking for the proportion in this range is equivalent to
asking the chance that any one person, chosen at random, will be in this range. If
the weights that might occur when we are about to choose someone at random are
denoted by X, the information in the question tells us that X ~ N(70, 10%). We
convert X to Z by first taking away 70 and then dividing by 10, so that a weight of
50 is equivalent to a Z value of -2, and a weight of 90 is equivalent to a Z value of
+2. In other words, the 50 kg is measured as 2 standard deviation units below the
mean and the 90 kg is measured as 2 standard deviation units above the mean.
Using the Appendix table as in example 3. we see that 1 —0.9772 or 2.28 percent
of the time we get a Z value above 2; likewise, 2.28 percent of the time we get a
Z value below 2. Therefore, 95.44 percent of the time we get a Z value in the
range -2 to +2. As explained already, this means that 95.44 percent of people
have weights in the range 50 to 90 kg (this assumes, of course, that it is in fact true
that weights are distributed as described here).

. If the yearly minimum temperature in a town is normally distributed with mean

9°C and standard deviation 3°C, what is the chance that this winter the town will
experience a temperature below freezing (0°C). The answer that follows uses the
same logic as in previous examples, but we use this example to show how the
logic can be expressed in more compact notation. The compact answer is that
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"X-9 0-9
X ~ N, 3%, P(X<()):P< <

):P(z < -3)=P(Z > +3)
=1 -P(Z<+3)=1-0.99865 = 0.00135.

In other words, there is a 0.135 percent chance or 1 in 740 chance. Put another
way, if climate was not changing and yearly minimum temperature truly followed
a normal distribution, we would expect on average one winter with subzero tem-
peratures every 740 years.

THE LOGNORMAL RANDOM VARIABLE

As discussed before, the lognormal random variable is the result of the
multiplication of a large number of chance effects. It can also be obtained by
taking a normal random variable and using it as an exponent, ¥ = ¢*. Con-
versely, the lognormal random variable can be changed into a normal random
variable by taking logs.' This result is related to the fact that taking logs in
effect turns multiplications (as in the multiplication of a large number of chance
effects) into additions (as in the addition of a large number of chance effects).
Like the normal random variable, the lognormal random variable is deter-
mined by two parameters, but its mean and standard deviation are more com-
plicated functions of the two parameters. (Note the average of 2 and 4 is 3, but
the average of 107 [= 100] and 10" [= 10,0007 is not 10* [= 1,000]). This simple
example shows that even though the average of X is pand Y = ¢*, we should
not expect the average of Y to be ¢*.) The lognormal random variable can take
values from 0 to 2. A noteworthy feature is its very long right-hand tail. Ear-
lier, one example of a lognormal random variable that was given was the size
of grains of sand on a beach. In a sense, the size of a particle of sand depends
on multiplying out the effects of all the splits in the original rock. For ex-
ample, one particular grain of sand comes from a rock that was first split into
equal halves. Then say that it was the right half that eventually gave rise to the
grain, and that the right half was split one-third and two-thirds. Then say it
was the two-thirds fragment of the right fragment that eventually gave the
grain, and then the two-thirds fragment of the right fragment that eventually
gave the grain was split into one-quarter and three-quarters. Then say it was
the one-quarter that eventually gave rise to the grain, and so on many, many
times. The size of the grain equals the size of the original rock x Y2 x 2/z x 14
and so on many, many times.

A physical manifestation of the fact that the Jognormal random variable has
a very long right-hand tail is that there is an occasional sizeable pebble, even
on a beach that consists mostly of fine sand. The lognormal distribution with
this lack of symmetry—a long right-hand tail but a much smaller left-hand
tail—is said to be positively skewed. In most of our work we will deal with
normal random variables. Lognormal random variables are most easily dealt
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with by changing them to normal random variables by taking the log of the
values; that is, the log of the size of the grains of sand on the beach are nor-
mally distributed.

HYPOTHESIS TESTS BASED ON
THE NORMAL DISTRIBUTION

As with our work on discrete random variables, the ultimate purpose is to
make decisions: Is it reasonable to believe that relaxation tapes really increase
the duration of sleep, or is it reasonable to believe that girls are better at math
than boys? In Chapter 4 we made these decisions after making certain prob-
ability calculations. However, the calculations took into account only the or-
der or ranking of the data values, not the actual values. In this chapter, instead
of using just the ranking of the data values we will use the actual data values in
making the relevant probability calculations and, hence, decisions. This ap-
proach, though, assumes that the values come from a normal distribution. This
assumption may be justified by the central limit theorem, but sometimes the
assumption will not be reasonable. Before coming to the examples of relax-
ation tapes and sleep or gender and math ability, we will start with a particu-
larly simple situation. We will deal first with making a decision about whether
just one particular data value comes from a known normal distribution.

Testing the Null Hypothesis That a Single Data Value
Comes from a Normal Distribution with
Known Mean and Standard Deviation: The z Test

It is unusual for a statistical test to be performed when there is just one data
value. However, it is perfectly valid to do so. Little calculation is required and
so it is easy to focus attention on the underlying philosophical principles. One
example is given to illustrate the procedure and the underlying philosophy.

Say we were interested in physical anthropology and in particular we were
interested in whether women from Madagascar were the same height as Ameri-
can women. I assume that I am dealing with an American readership that has
no direct knowledge about the height of Madagascans, but who in the absence
of any knowledge would assume that Madagascans have the same height dis-
tribution as Americans. Our null hypothesis, Hy, is just that: Madagascan women
have the same height distribution as American women, so the average height
of Madagascan women is the same as the average height of American women.
Our alternative hypothesis, H,, is that Madagascan women have a different
height distribution than American women, so that the average height of
Madagascan women may be either smaller or larger than the average Ameri-
can woman’s height. Let us then assume that we know that the height of Ameri-
can women is normally distributed with i = 5" 6” and o = 3". Let us also
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assume that we have met our first Madagascan woman, a tourist in the United
States, and that she is 4’ 10%2". We need to also assume that this woman was
chosen at random, without regard to height, from the Madagascan population.
In other words, this Madagascan woman was as likely to be measured by us as
any other Madagascan woman (if shorter people in Madagascar were for some
reason more keen or more able than average-size Madagascans to obtain trips
to the United States, the reasoning that follows would not be valid).

We start our calculation by assuming that H; is true, so we assume that the
Madagascan woman has a height that has been chosen at random from a nor-
mal distribution with u=5' 6" and o = 3”. The woman we have just met is 72"
or 2.5 (= 7¥"/3") standard deviations below the mean. Computer programs or
statistical tables show that 98.76 percent of the time values chosen at random
from a normal distribution will be closer to the mean than 2.5 standard devia-
tions and only 1.24 percent of the time will they be at least as far from the
mean as is our Madagascan woman (0.0062 is the probability of a value < -2.5
and 0.0062 is the probability of a value > +2.5, so 2 x 0.0062 = 0.0124 is the
probability of being outside the range —2.5 to 2.5). We then have to weigh two
options: “H, is true, Madagascan women have the same average height as
American women, and our unusual result from our one Madagascan is ex-
plained by a 1.24 percent chance coming off,” or “H, is true, the height distri-
bution of Madagascan women is different from that of American women, and
this explains why our Madagascan woman does not have the height of usual
American women.” As in the previous chapter, we make our decision by com-
paring our p value of 0.0124 with some benchmark p value. As before, the
benchmark p value describes the sort of coincidence that would be just suffi-
cient to make us change our minds about whether we were dealing with the
combination “H, with coincidence” or whether we were dealing with a real
difference, H,. If we believed that it is appropriate to use the traditional bench-
mark p value of 0.05, we would note that 0.0124 is less than 0.05 and con-
clude that Madagascan women are smaller than American women. Formally,
we would state that we have statistically significant evidence (or the evidence is
statistically significant at the 0.05 level) that Madagascan women are smaller than
American women. It is entirely a matter of personal judgment whether we be-
lieve that the 0.05 benchmark p value is appropriate. However, it seems reason-
able to me to use 0.05 here. It would be convenient not to have to store an extra
fact in our brains that Madagascans have different heights to Americans, so we
shouldn’t discard H,, because of evidence that could very easily be attributed
to chance. On the other hand, it is clear that there is some racial variation in
height in some instances so it would be silly to persist with the belief that there
is no racial differences in height between Americans and Madagascans in the
face of evidence that was difficult to explain by chance alone. With no great
concern involved about the relative likelihoods of H, and H, and no great
concern about the costs of making an error in either direction, it would seem
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reasonable to me to use the traditional 0.05 benchmark p value and so I would
conclude that Madagascan women are shorter than American women.

Many people learning statistics seem to be upset by this type of example:
There is a feeling that a single case constitutes evidence that is far too flimsy
to justify any conclusion. There are several points to be made here:

The first point is that it is not the number of cases that constitutes the strength
of the evidence. The strength of the evidence is given by the probability calcu-
lation made on the assumption that H,, is true. The result of this probability
calculation is the p value, which tells us how easy or how hard it would be for
coincidence alone to explain the result. A difference in heights with a p value
of 0.0124 with one case is just as likely to be a real difference as a difference
in heights with a p value of 0.0124 based on 100 cases. The value in taking
100 cases instead of one case is that smaller real differences will show up as
being too big to be reasonably blamed on chance. If we had 100 cases we
would get a p value of 0.0124 when the average height of the 100 Madagascans
was only 34" less than the average height of the Americans. The calculation
here is explained later. Conversely, although this single case gave us reason-
ably convincing evidence that Madagascans differ from Americans, it would
probably not have done so if Madagascans were only slightly smaller than
Americans.

The second point is that even after taking on board the first point many
people might still regard the evidence on which we are making a decision
between H, and H, as unreasonably flimsy. It could well be that we are con-
cluding that Madagascan women are smaller than American women simply
because the one Madagascan we happened to meet was one of the five out of
every hundred Madagascans who have heights that are uncommon in both
Madagascar and the United States. However, in this example we have used the
same strength of evidence (p = 0.05 benchmark) that is used throughout the
scientific world. In the real world we often have only flimsy evidence and we
have to decide on that basis what is reasonable to believe. If we had more solid
evidence we wouldn’t need to use statistics. Unfortunately, many phenomena
in the real world are subject to great variability and uncertainty, yet we still
have to make decisions about factors that may have some influence on the
phenomena. We have to do this even though the size of the influence is so
small that it could easily be mistaken for the result of random variation. For
example, many lifestyle and dietary changes and preventive medical interven-
tions may only make a small amount of difference to the number of initially
healthy people who are likely to die in five years. However, we will want to
decide whether any differences in the death rate at five years are “for real” or
just due to chance so we can decide what lifestyle and other interventions are
worthwhile recommending. In this situation we are likely to be content to
make a decision with evidence no more convincing (as assessed by p values)
than our decision in the case of Madagascan women. To wait for the evidence
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to become much more convincing would require that we wait until most of the
people trying out the different lifestyles that we are interested in have lived out
their lives. It would require us to wait for a lifetime to get answers.

Some may continuc to protest that statistical analysis is only valid if we
have a representative sample. and they may argue that the height of one person
cannot fairly represent heights in a whole nation. However, this protest is not
valid. Statistical analysis requires representative samples. but the term “repre-
sentative™ here does not imply the usual full literal meaning of the word: it
does not require that any individual in the sample be a typical representative
ol her nation. All that is required for our analysis to be valid 1s that each
person in the sample is chosen entirely at random so that every person in the
population has an equal chance of being chosen. Il Madagascans are the same
as Americans. then a randomly chosen Madagascan woman will have a 95
percent chance of being in the same height range as 95 percent of American
women. If she is not in this height range, then using the benchmark p value of
0.05 we would regard this outcome under H,, as too much of an unlikely coin-
cidence and would rather believe that Madagascan women are different. We
sce that a sample of one is representative in the sense required by statistics,
provided the single person has been chosen entirely at random.

It should also be noted that although we have only one piece of information
about Madagascan women. we are comparing this information with complete
knowledge of American women, knowledge that would have required a large
number ol measurements.

SAMPLING DISTRIBUTIONS

It is unusual for only one measurement to be available. More commonly a
number of measurements are made of the same phenomenon. We measure the
values from a sample of individuals obtained from the same population. We may
measure the heights of a number of Madagascan women. We then want to use
information [rom all these measurements to test the hypothesis that Madagascan
women have the same height on average as American women. What sort of in-
formation should we use? The most obvious answer is that we should use the
average of the measurements. Provided the underlying distribution is normal,
mathematical theory agrees that this obvious answer is also the “*best” answer.

We are then faced with a problem. We know that according to the nuil hy-
pothesis individual measurements come from a particutar normal distribution,
and we have seen how to use this fact Lo obtain p values to help make sensible
decisions about the truth of the null hypothesis. We are now dealing with an
average, but it is the average of numbers that are subject to variation; hence,
the average 1s subject to variation. We then need to know the distribution of
the average of a number of measurements in order to use a group average to
test a hypothesis in the same way as we used an individual measurement to
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test a hypothesis. Although the proof is beyond the scope of this book, the
answer turns out to be simple (for proofs, see the probability and statistics
texts in the bibliography). If the individual measurements are chosen indepen-
dently of each other and come from a normal distribution with parameters u
and o, then the average of n measurements comes from a normal distribution
with parameters u and

Even if the individual measurements don’t come from a normal distribution
but come from some other distribution with expected value u and standard
deviation o, then usually, if n is large (say 20 or more), the average of n mea-
surements will usually have a distribution very similar to a normal distribution
with parameter @ and standard deviation

(o2

N

This result is a consequence of the central limit theorem.

This distribution of sample averages is known as a sampling distribution. In
colloquial language, the sampling distribution tells us that the average of a
whole lot of things that vary a fair bit about some central value will be some-
thing that varies about the same central value, but the amount of variation is
reduced by a factor of the square root of the number of things used in calculat-
ing the average. This matches our intuitive idea that the average of a whole lot
of measurements will be close to the true long-run average, but goes further
and tells us how close to the true average we are likely to be. The fact that the
factor by which standard deviation is reduced in going from individuals to
groups is 1 requires some mathematics to prove, but it is related to the square
root sign in the definition of standard deviation. Further explanation is beyond
the scope of this book.

For some of the work that follows, translation of these statements into math-
ematical symbolism is useful, because once people get used to the symbolism,
reasoning can be expressed more simply and precisely. In symbols, let X,
describe the value we may obtain on our first measurement, and X, describe
the value we may obtain on our second measurement, X, the third measure-
ment, and so on. The result of averaging lots of random variables (sets of
numbers with chances attached) is another random variable (set of numbers
with chances attached). This average random variable is denoted

X +X,+X,+...+X,

n

X =
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If X, ~ N(p, o?) where the subscript i denotes the ith measurement and the X,
are independent of each other so that each of the n values are to be chosen
independently from the same normal distribution, then

5

X~Nipu

i

or, equivalently,

X~N p,i Note that (.r_ =7
n n n

A

Therefore, noting the argument on p. 105, we have
X -y

(r/ —
n

\

Z9

where Z 1s the standard normal random value. In other words,

I
RN, 1),

% n

Briefly, we can say that if the individual measurements come from a normal
distribution with parameters py and o, then the average of n measurements
comes from a normal distribution with parameters p and 0/\ n. However,
we need to keep in mind the important proviso in the more careful state-
ment in the previous paragraph. The distribution with parameters p and 9/ \Z
for the average of » measurements is only true if the individual measure-
ments are chosen randomly and independently of each other. While this
may seem an obscure requirement, failure to satisfy this requirement is in
fact a major pitfall in practical statistics. I to save time we measured heights
of a group of people in the same household instead of choosing each per-
son in the sample for measurement independently, then it would not be so
surprising to end up with a group of people who are all dwarves, since people
in the same household tend to be related and may all have dwarfism for
genetic reasons. If we chose people from separate households, obtaining a
dwarf from every one would be most unlikely. The average height of house-
hold groups will be more variable than the average height of groups of
individuals who have been selected independently of each other. It is not
possible to predict the variability of groups where the individuals are not cho-
sen independently.
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Example of Use of Sampling Distributions in Calculations

Problem: Intelligence as measured by IQ testing is said to be N(100, 15°).
According to the normal distribution table. a proportion of 0.1587 of all people,
or 15.87 percent, have an IQ at least one standard deviation or 15 above the
mean of 100. In other words, an IQ of 115 is the dividing line between the
cleverest 15.87 percent of people and the rest of us. Now assume that for some
reason many groups of four people have been formed in which each member
of each group has been chosen randomly and independently of the others and
the average 1Q of the group of four is measured. What IQ level is the dividing
line between the cleverest 15.87 percent of the groups of four and all the oth-
ers? Equivalently, find the IQ level such that there is a 15.87 percent chance of
the average 1Q of the group being above this level.

Solution: If the standard deviation of individuals is 15, the standard devia-
tion of the average of such groups of four is

1
\.4

th

1
= =17.5.

Lh

-2

We are dealing with a normal distribution with mean 100 and standard devia-
tion 7.5. The required value is one standard deviation above the mean. It is
therefore 100 + 7.5, or 107.5. If we repeat the question for the average 1Q of a
group of thirty-six individuals each randomly chosen independently of each
other, the standard deviation for the group average is

The answer is then that the required IQ level is 102.5.

If we repeat the question for a randomly chosen class of thirty-six children,
no solution is possible. If the class has been chosen randomly, any child is as
likely to be chosen as any other child in the population, so it is true to say that
each child is chosen randomly. However, the children are not chosen indepen-
dently of each other: They are all in the same class. If the first child we mea-
sured was well below average. it would be likely that some socioeconomic
disadvantage may have contributed to his or her poor performance, and if so
this socioeconomic disadvantage would be likely to be shared by other chil-
dren in the same class who would probably come from the same locality. The
average of classrooms of thirty-six children will therefore be more variable
than the average of groups of thirty-six unconnected (i.e., independently ran-
domly selected) children. Exactly how much more variable would be impos-
sible to predict without further information.
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Testing the Null Hypothesis That the Mean of the Data
Comes from a Normal Distribution with
Known Mean and Standard Deviation: The z Test Again

Most times we are interested in the possibility of changes that are not so
convincing that they stand out with a single measurement. If we measured the
heights of 100 Madagascan women and the average height was 5' 5%4”, should
we believe that Madagascan women are smaller than American women? Again
we assume that we know that American women have heights described by a
normal distribution with u=15" 6" and o = 3". Here the null hypothesis is the
same as in the case of the height of a single Madagascan woman. In other
words, we start with the belief that Madagascan women have the same height
distribution as American women and that it is appropriate to maintain this
belief and attribute any difference that we find to coincidence unless the coin-
cidence is of the sort that “hardly ever” occurs. As in the previous example
regarding the height of Madagascan women, I would regard it as reasonable to
use the traditional benchmark p value of 0.05 or 5 percent as an appropriate
specification of “hardly ever” in this situation. We will assume that each woman
is selected randomly so that each woman chosen yields a value randomly se-
lected from the normal distribution. We will also assume that the women have
all been chosen independently of each other. From the previous section, we
know that the average of 100 values from a normal distribution with u=5'6"
and ¢ = 3" will be a value from a normal distribution with g = 5’6" and stan-
dard deviation = 3"/ 100 = 3"/10 = 0.3”. Our value of 5'5%" is %" or 2.5 (=
0.75"/0.3"y standard deviations below the mean. This is the same number of
standard deviations as in the case of the single Madagascan woman of 4" 10%2".
As previously, computer programs or statistical tables show that 98.76 percent
of the time values chosen at random from a normal distribution will be closer
to the mean than 2.5 standard deviations. Since average heights would be at
least as far out as 2.5 standard deviations less than 5 percent of the time, we
conclude that there is evidence that Madagascan women are shorter than Ameri-
can women that is statistically significant at the 5 percent level.

We assess the strength of our evidence against the null hypothesis by find-
ing out how small the chance is of obtaining results at least as extreme as ours
by sheer coincidence. Therefore, we can say that the evidence we have ob-
tained from 100 Madagascan women is exactly the same strength as the evi-
dence we obtained from | Madagascan woman, since in both cases p = 0.0124.
Why then bother measuring 100 Madagascan women when one would do?
The answer is suggested by the examples. When measuring one Madagascan
woman we would have a 50-50 chance of getting a woman as small as we did
only if the average Madagascan woman was 4’ 10%2”; that is, 7V5" smaller than
American women. So with one Madagascan woman we would have a 50-50
chance of getting evidence against the null hypothesis that was less convinc-
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ing than the evidence we obtained, even though the mean height of
Madagascans was 7%2" shorter than Americans. When measuring 100
Madagascans the same calculations apply when the height difference is only
%", In general, the more data values we have, the more likely we are to come
to correct conclusions about small but real differences.

One extra bit of jargon is useful here. In the calculations there are two dif-
ferent standard deviations that are relevant. There is the standard deviation of
individual values, . There is also the standard deviation of the average value
of a group of individual values,

g

\ ;li
To reduce confusion, the latter is given a separate name. It is called the stan-
dard error of the mean or simply the standard error.

Here is a second example, using some mathematical symbolism in place of
words. It is believed that radioactive particles in the atmosphere are a factor in
causing leukemia. With many poisons there is a safe dose, in the sense that a
small enough dose will cause no harm at all. However, radiation biology sug-
gests that in the case of atmospheric radiation there is no safe dose: Small
increases in atmospheric radiation will cause a small increase in risk. How-
ever, this small risk applied to each of a large number of people will result in
small increases in leukemia incidence and hence deaths. The example then
concerns radiation levels after a minor nuclear accident. Say we knew that radia-
tion levels over a city used to be normally distributed with a mean of 100 and
standard deviation of 30. Let’s say that after an accident at a nearby nuclear plant
we took twenty-five measurements of atmospheric radiation and we obtained an
average level of 124. Does this provide evidence of increased radiation?

We follow the traditional statistical approach to answering this question by
starting with the null hypothesis H,, that the postaccident radiation levels are
distributed in the same way as the preaccident radiation levels, with a normal
distribution centered on 100 and a standard deviation of 30. Note that the
reasoning we are using in this particular example would, for most fair-minded
people, not be credible. To convince those who would want to believe that the
accident has caused no pollution, we are saying that, in the first instance, we are
happy to pretend that there is no increase in atmospheric radiation as a result of the
accident even though we know that nuclear accidents often release radioactive
particles into the air. We are going even further and are saying that we will be
persuaded that there is a real increase only if whatever increase we actually en-
counter can’t easily be put down to a coincidence. Perhaps there is some reason to
believe that in the case of this particular accident absolutely no radiation has
been released into the air or that a strong wind had blown all radioactive par-
ticles away from all population centers and all radioactive particles have been
deposited where they will not encounter humans until they have decayed. Oth-
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erwise, our starting point, our null hypothesis or H,, is an abuse of statistics
and we really should not consent to such a null hypothesis. We note that the
question, “[s there evidence that the nuclear accident has increased atmospheric
radiation?” would be more rational if it were rephrased as, “Say we were to
completely ignore the common sense that tells us that a nuclear accident is of
itself evidence of increased atmospheric radiation and instead we were to look
at the figures alone, would these figures give us convincing evidence of in-
creased atmospheric radiation?” The null hypothesis that there is no increase
in atmospheric radiation is employed here to illustrate the calculations, but its
unreasonable use here also illustrates the widespread misuse of statistics.

In general, if the null hypothesis tells us that individual values X, are N(y, o)
(i.e., normally distributed with mean p and standard deviation o), then under
H, the average of our data, X, will be

and we can judge the probabilities of various values of X by using the fact that
X-n
A
will then have a standard normal distribution.
If we start with X, ~ N(100, 30%), then the theory tells us that the random

variable describing the average of twenty-five such measurements has stan-
dard error /.35 = 6, so X ~ N(100, 6%). Then

X - l()0> 1246— 10

P(X > 124) = P( 0) =P(Z > 4)=1-P(Z < 4) = 0.000032.

Another way of expressing this result is to say that an x value of 124 is equiva-
lent to a z value of 4 and that z values at least as large as 4 occur only 0.0032
percent of the time. Here we have introduced new jargon. X as before is a
random variable, as it is the set of values that we might obtain when we take
our measurements and average them. Now we use ¥ to represent the particular
value of the random variable X that we actually do obtain when we take our
sample and calculate the mean, and we use the lower-case letter 7 to represent
a particular value obtained from a standard normal random variable (the latter
is usually denoted Z). The value 0.000032 or 0.0032 percent that we get is
again our p value. If we were to use p = 0.05 as our benchmark, we would
reject H, that “radiation levels after the nuclear accident are unchanged.” The
increase in radiation is “statistically significant.” Happily, on the figures pro-
vided, statistics tells us to reject a null hypothesis that common sense told us
was inappropriate in the first place.
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We note that a figure of 124 as a single measurement rather than an average
would not make us reject H,, at the p = 0.05 benchmark: It is only /3 standard
deviations above the mean, so it is less than the 1.645 standard deviations
above the mean that is required for a one-tail test to be significant at the 5
percent level. Because we have twenty-five measurements, smaller variations
from the long-run average of 100 show up as statistically significant. In collo-
quial language, the fact that taking averages allows us to reject the null hy-
pothesis even though the changes in the values are not so marked reflects the
fact that averages of twenty-five figures are five times less “wobbly” or vari-
able or uncertain than a single figure. If the data average is some way away
from what would be the central value according to the null hypothesis and the
data average is not very “wobbly,” the difference is likely to be real.

However, say the average value of the radiation level was 109 = x. This X
value would be equivalent to a z value of

Fou 1092100
()'/\ﬁ' 6

and 7 values at least this big occur 0.0668 of the time. Since this is bigger than
0.03, the conclusion of the statistical analysis would classically be stated as,
“There is no evidence that the nuclear accident has increased radiation.” This
conclusion would of course be inappropriate: We already know that there has
been a nuclear accident likely to have emitted some radiation and we now see
average measurements that have gone up so much above the previous average
value of 100 that blaming the increase purely on variability means blaming
the increase on a chance that occurs only 6.68 percent of the time. As previ-
ously, the conclusion here would be more sensible if it were stated as “looking
at the figures alone, an average over twenty-five measures of 109 is not con-
vincing evidence of an increase from the long-run average of 100 because the
natural variability here could easily account for such an increase.” Of course,
in this situation it is not sensible to look at the figures alone.

There is another important problem here. Our calculations assume that we
have taken the average of twenty-five independent measurements. In environ-
mental statistics it is often not completely true that each measurement is inde-
pendent of all others. The most extreme example of lack of independence
would arise if all twenty-five measures were performed on the one sample of
air divided into twenty-five parts. While something like this might be neces-
sary at some stage to check on the reliability of our measuring devices, it
would only give us one effective measurement of the quality of the air. Less
extreme examples would arise if many of the measurements were taken close
together in time or space. Twenty-five such measures would give us less than
the equivalent of twenty-five independent bits of information about the state
of the air over all the time and space of interest. A lot more theory is required
in order to know how to deal with such problems.
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TESTING THE NULL HYPOTHESIS THAT THE DATA COME
FROM A NORMAL DISTRIBUTION WITH KNOWN
MEAN AND UNKNOWN STANDARD DEVIATION:

THE t DISTRIBUTION AND THE SINGLE SAMPLE ¢ TEST

Most times when we want to test an hypothesis about a mean from a normal
distribution we do not have information about standard deviation. In our height
example we may have good information that the true average height of Ameri-
can women is 5’6", but we may not know that o = 3". At this stage we recall
that our null hypothesis is that the sample values that we have obtained from
Madagascan women are distributed in the same way as the heights of Ameri-
can women. Therefore, it we assume that H,, is true and we estimate the stan-
dard deviation of our sample, we have an estimate of the standard deviation of
the heights of American women. We estimate this standard deviation o by the
sample standard deviation s in the data we collect (this can, of course, only be
done it there is more than one measurement). We then replace the ¢ in our
calculations by this s. In particular, we work out how far our average X is from
the mean u in terms of estimated standard deviations of the mean (i.e., esti-
mated standard errors). How far x is from the mean u is ¥ — u. The estimated
standard error (or standard deviation of the mean) is 5/, n. so the distance of x
from the mean u in terms of estimated standard errors of the mean is

X—u

S/\ " )

If H, were true and we had used o instead of s, our result would be a z value
(i.e., a value from a standard normal distribution). Because we use s in place
of o, the result is not a z value. It is called a r value. It is the result of a choice
from a particular random variable known as the £ random variable. The pattern
of chances and values for ¢ (i.e., the ¢ distribution) will depend on the pattern
of chances and values of the normal random variables that make up our sample.
Since each of these normal random variables depend on parameters u and o,
we might expect the ¢ distribution to depend on u and o. However, ¢ is defined
so that it is standardized regardless of u and o, in the same way as a general
normal random variable with parameters u and o can be standardized to the
standard normal random variable Z. On the other hand, there is a different ¢
distribution for samples of different sizes. If we have a sample that consists of
just one value, we cannot have a t distribution, because from one value we
cannot estimate the spread of values, s. If we have a sample consisting of just
two values, we have one measure of spread. The value

X—-u

Sn
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with n = 2 is then a value from a ¢, distribution. With a sample of three values
there is in some sense two measures of spread and the value

X—p

s /\ g

with n =3 is a value from a ¢, distribution. With a sample of n values there is in
some sense n — I measures of spread and the value

X— 1

s /\ n
is a value from a ¢, _, distribution. The subscript # — | here is sometimes
referred to as the “degrees of freedom,” so instead of saying something has a ¢, _,
distribution we might say it has a ¢ distribution with n — 1 degrees of freedom.
When 7 is large, our estimate of variability s is based on a large number of

measures of spread, and so s should be a fairly accurate estimate of o. There-
fore with n large there should be very little difference between

-

s /\ 1*

~

and

X—p

o /\ "
Therefore, if n is large, the ¢, , distribution will be close to the standard nor-
mal distribution. Differences between the two distributions are very minor

when 7 is more than about 20.
Let us examine again what we are doing when we calculate

X -

s/\;
We first calculate s, which is an estimate of how variable our data are. We then
calculate 8/, n, which is an estimate of how much variability we would expect
in our sample mean given the variability of the individual data values. We then
see how big the distance between the sample mean and the hypothesized true
mean is (X — ) in comparison to the amount of variability we can expect in our
sample mean. This is the quantity

X—u

t:—"‘—_.

S/\ ’—1
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Values outside a certain range will occur rarely. For instance, for a ¢ distribu-
tion, tables show that values outside the range —2.571 to +2.571 occur just 5
percent of the time. In other words, 95 percent of the time the sample mean is
within 2.571 estimated standard errors of the true central value, p. If we get a
value outside this range we have to conclude that either we are dealing with a
rare chance coming off or the hypothesized mean, |, is incorrect. Tradition-
ally, statistics tells us to use the 0.05 benchmark and so choose the second of
these options, though, as has been repeatedly emphasized, we should always
use common sense in deciding between such options rather than blindly fol-
lowing the traditions of statistics.

For example, say we measured the height of six randomly and indepen-
dently selected Madagascan women and obtained the values 161, 169, 153,
165, 157, and 149 cm. Again, let H, be that Madagascan women have the
same height distribution as American women, who let us say are known to
have average height u = 170 cm. As before, I believe it is reasonable in this
situation to use the conventional benchmark p value of 0.05 in deciding whether
to reject H,,. Calculations now give ¥ = 159 and s = 7.483, so here

_Tou_159-170
S/, 1483/ ¢

Since 95 percent of the time when H, is true we would get a f value in the
range -2.571 to +2.571 and we would “hardly ever” get a value of ¢ at least as
far out from 0 as —3.60, we reject the null hypothesis that Madagascan women
have the same average height as American women. The sort of hypothesis test
described in this example is sometimes called the single sample ¢ test.

The Paired Sample ¢ Test: Testing the Null Hypothesis That the
Differences between Paired Data Points Comes from a Normal
Distribution with Mean 0 and Unknown Standard Deviation

The statistical tests based on the normal distribution that have been de-
scribed so far are not used that often. The main point in discussing them is to
give some insight into principles underlying two common tests. The first of
these two common tests is called the paired sample ¢ test. This test is used in
the same situation as the Wilcoxon signed rank test, which we discussed in
Chapter 4. Both the Wilcoxon signed rank test and the paired sample ¢ test
apply where there is some pairing. Pairs of measurements are made. One mea-
surement of each pair is made without the intervention and the other measure-
ment is made with the intervention. Unlike the Wilcoxon signed rank test, the
paired sample ¢ test assumes that there is an underlying normal distribution.
Both tests are used in obtaining an answer to the question, “Does some inter-
vention affect the outcome?” The requirement of some pairing of the mea-
surements applies if we have individuals and we measure outcomes before
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and after some intervention. Pairing also applies if we have pairs of similar
individuals and measurement is made on the one of the pair who has received
the intervention and the other who has not. The pairs of individuals could be
pairs of twins, siblings, or even unrelated individuals who form pairs in that
they are similar in age and other attributes. The difference between the mea-
surement with and without the intervention is the value of interest. We recall
that pairing is desirable to reduce the effect of variation from individual to
individual. which may otherwise overwhelm the detection of real changes (see
the discussion, pages 76 and 77, on the sign test, McNemar's test, and the
advantages of pairing). The effect of individual variation is reduced because
we are comparing each individual with himself or herself or with his or her
pair. For example, the intervention might be supplying a relaxation tape and
the value of interest would be the difference in the amount of sleep an indi-
vidual got on the first night the tape was used in comparison to the amount of
sleep the previous night. As another example, if we were interested in the
effect of sports on academic performance, we might deal with human twins
and the intervention might be an extra hour per day of sports for one of each
pair of twins and the value of interest for each of the pair of twins would be the
difference in their academic marks at school.

The necessary assumption of a normal distribution for the  test to be valid
is often taken for granted. This assumption of a normal distribution is often a
reasonable approximation, particularly where each measurement is a continu-
ous value that is the end result of a large number of chance effects. Recall that
the central limit theorem says that in many circumstances the end result of add-
ing a large number of chance effects is a normal distribution. The average of a
number of differences between two measurements will in tum be the end result of
the addition of a number of chance effects. The issue of assuming a normal
distribution is discussed further at the end of this chapter. However, in each
situation, some thought is needed and if the assumption of a normal distribu-
tion is unreasonable, the Wilcoxon signed rank test should be used instead.

The null hypothesis H,, in this paired situation will be that the intervention
is entirely irrelevant to the outcome being measured: The differences in each
of the pairs of measurements will be entirely due to chance alone. The differ-
ences will then be values randomly scattered about zero. In the paired sample
1 test, we are assuming that this random scatter follows a normal distribution. Our
H, is therefore that the differences are values from a normal distribution centered
on zero but with unknown standard deviation. In the previous section we dealt
with testing whether data come from a normal distribution with known mean
and unknown standard deviation. This is exactly the situation here. We test
whether H,, is reasonable by using the individual differences to find the amount
of scatter in the system as estimated by s. the sample standard deviation. We
then use this s to derive a measure of how much variability should be expected
in the average of the differences. If there are n pairs of measurements we have
n differences. The standard deviation of an average of n values is % n, the
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standard error, so this is the measure of the variability of the average of the
differences. The null hypothesis is that the differences are randomly scattered
about zero, but a sample of differences will not generally average out at ex-
actly zero. Whether the average of our sample of differences 1s unreasonably
far from zero is judged by comparing how tar out from zero it is with how
much variability could be expected of such an average. This is the quantity

-0 X X.n
[= : or — or
‘/\ n ./\ n s

As before, if H, is correct, 7 is a value from a ¢, | distribution. If we get a
value outside the range that is common for such ¢ values, then we have to
decide between two options. One option is that we believe that H, is still true
and it is coincidence alone that has led to an average difference that is surpris-
ingly far from zero given the amount of variability that appeared to be in the
system. The other option is that H,, is not true: The average difference in the
pairs of measurements is not zero because the intervention does atfect the
outcome measured. As in the statistical tests discussed previously, we use the
size of the coincidence given by the p value associated with the ¢ value in
making the decision between the two options. If we have a tiny p value, the
only way to maintain our belief in H, is to argue that the results are the product
of a very long coincidence. As always, we should also use common sense in
deciding between the two options.

Readers may be a little confused about a small technicality here, in that we
divided s by  n but later used n — 1 in specifying the relevant ¢ distribution.
The n is used because the average of n measurements is less variable than the
individual measurements by a factor of . The n— I is used in the calculation
of s, the estimated standard deviation, because with the measurement of one
difference we have no measurements of deviation of differences from the av-
erage difference. with measurement of two differences we have in effect one
measure of deviation from the average difference, and with measurement of
differences we have in effect n — | measures of deviation from the average
difference. These considerations lead, after some mathematics beyond the scope
of this book, to the ¢, | distribution being relevant.

For example, let us return to the relaxation tape example, where we mea-
sured the amount of sleep had by eight individuals on a night without and on a
night with the relaxation tape. The table of values is reprinted here for conve-
nience. The differences are all given in minutes:

Person A B C D E F G H
Before 5:37 6:24 4:22 6:53 3:19 5:07 6:48 7:09
Atter 5:18 6:47 7:01 6:46 7:31 8:08 7:51 8:11

Difterence ~19 +23 +159 -7 +252 +18] +63 +62
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Here our average difference x is 89.25 and s is 97.52. Therefore,

X 8925
s/ n 9152/ ¢

With eight values we have the equivalent of seven measures of deviation,
and so if H, is correct this is a value from a ¢, distribution. A one-tail test is
appropriate here, since if the relaxation tapes do anything for sleep they will
lengthen it. Lengthening corresponds to a bigger value for x and hence a big-
ger . A computer program will show that 98.2 percent of the time values from
a t, distribution are in the range - to +2.589 and only 1.8 percent of the time
are values 2.589 or more. Therefore, we are either dealing with a true H; and
a coincidence of a sort that occurs less than 5 percent of the time, or H,, is
incorrect. If we use p = 0.05 as our benchmark p value, we reject H,,. It is
appropriate here to note the discussion in Chapter 4 suggesting that it may be
being unreasonably cynical to require such a small p value before believing in
this H,. However, the choice of a benchmark p value above 0.05 would not
change our conclusion here. If our benchmark for rejecting H,, is a coinci-
dence that points toward the truth of H, and would occur 5 percent or less of
the time if H,, were true, then the computer or tables show that this will corre-
spond to a ¢ value of +1.895 or larger.

The Independent Samples ¢ Test: Testing the Null Hypothesis That
Means of Data Values from Normal Distributions Are the Same

Often we deal with situations where there is no natural pairing and where
before and after measurement is not possible. For example, we may be com-
paring the length of sleep in men and women. Although before and after mea-
surement is desirable to reduce the effects of individual variability, we obviously
couldn’t very well measure the length of sleep in people of one gender, per-
form sex-change operations on them, and then measure the amount of sleep
again.’ The null hypothesis here is that on average there is no difference be-
tween the amount of sleep in people of either gender. We could deal with this
situation by a Mann—-Whitney test, but this test only uses the order of the data
values and ignores the extra information that could be gleaned by using the
actual values. To use the actual values we must assume that these values come
from some probability distribution. The most common distribution in nature is
the normal distribution. This is a consequence of the central limit theorem, so this
is the distribution generally assumed (however, there is further discussion of this
issue at the end of this chapter). The test, assuming that the data come from two
independent samples and that there is an underlying normal distribution with
unknown standard deviation, is referred to as an independent samples ¢ test.

The calculations are a little more complicated than they are in the case of
paired data, so instead of giving enough information to do the calculation
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using a calculator and tables, we will just give an outline of the calculation
that the computer performs. Say that there are m values in one group and n
values in the other. We will refer to the two groups as group | and group 2,
respectively. Let us now examine the philosophy behind the calculations made
by the computer.

There are four interrelated factors that complicate matters. First, the null
hypothesis H, states that all » + » values are drawn from the same unknown
normal distribution. However there are three alternatives to the null hypothesis:

H (i): It may be that groups | and 2 have the same means but have ditferent standard
deviations.

H (ii): It may be that groups | and 2 have the same standard deviations but have
different means.

H,(iit): It may be that groups | and 2 have both different means and standard deviations.

Second, it is hard to imagine any influence that affects the mean that would
not also affect the standard deviation, at least slightly. Conversely, almost any
influence that affects the standard deviation would at least slightly affect the
mean as well. Therefore, if the words “the same” in the definitions of H,(i)
and H,(ii) are interpreted strictly, these options are implausible. The only plau-
sible choice then is between H, and H,(iii). Nevertheless, it is conventional to
ignore this consideration and regard all four hypotheses as feasible.

Third, most of the time our main interest is in whether the means are differ-
ent regardless of any differences in standard deviations. We are therefore pri-
marily interested in whether the data provide convincing evidence that means
are different regardless of whether the standard deviations are equal. In other
words, we start with either H, or H, (i), both of which state that the means are
the same, and then see if there is convincing evidence against either of these
hypotheses. In other words, we want to calculate a p value to see if there is con-
vincing evidence that means are different, regardiess of whether we provision-
ally assume standard deviations are equal or unequal, respectively. However,
these two provisional assumptions lead to slightly different tests [note that if
H,(i) is our provisional assumption, we are using H_(i) as a null hypothesis].

Fourth, the theory used to see if there is convincing evidence against H (i)
involves approximations and is less satisfactory than the theory used to see if
there is convincing evidence against H,. Classically, it is recommended that
we use H (i) (means equal, standard deviations unequat) as our null hypoth-
esis if there is convincing evidence that H, is incorrect regarding equal stan-
dard deviations. This recommendation then requires a preliminary test known
as an F test. This test looks to see if the standard deviations of the two groups
are so different that chance alone would “hardly ever” lead to a difference in
standard deviations at least as large as that observed.*

If calculations are being done by hand, we often perform just the statistical
test to see if there is convincing evidence against H,, in terms of difterent means.
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The pds computer program gives the p value of this test as its one-line result,
but like other computer programs performs all three statistical tests mentioned
in the third and fourth alternatives. It gives the results of these tests on clicking
on “moreinfo.”

An additional approach suggests itself and i1s also performed by the pds
computer program. If two groups are diftferent in standard deviations they are
not groups drawn from the same population and so are almost certainly at
least slightly different in means. Therefore, both the test to see if there is con-
vincing evidence against H, in terms of equal means and the test to see if there
is convincing evidence against H, in terms of equal standard deviations are
separate (in fact, independent) tests of whether we should believe the two
groups come from the same population and so have the same mean. The mini-
mum of the two separate p values from these tests is taken. An adjustment
then has to be made. The adjustment takes account of the fact that by doing
two tests we are giving ourselves two chances of rejecting H,,. If it were pos-
sible to do twenty tests to see if we should reject H, and our criterion for
rejection was p < 0.05 on any test, then with twenty chances, each with prob-
ability 1 in 20 of occuring even when H, is true, we probably would end up
incorrectly rejecting a true H, most of the time. In such a situation an adjust-
ment is necessary so that the overall chance of rejecting a true H, will be 0.05.
The same applies to a lesser degree when, instead of twenty tests, we perform
two separate tests of H, (the test concerning equality of means and the test
concerning equality of standard deviations). The pds computer program makes
the appropriate adjustment to arrive at an overall p value. This approach can
be summarized by saying that if the populations from which the samples are
drawn are different in any way they are almost certainly at least a little bit
different in all ways. This is an approach not favored by classical frequentist
statistics. Instead, according to the classical approach, even if we must con-
cede that there are differences in one aspect, such as standard deviations, we
should wait to be convinced by the figures of differences in another aspect,
such as means.

This discussion has concerned philosophical ideas underlying hypothesis
testing in the case of two independent samples. We now deal with the issues in
a more practical way. To test if there is convincing evidence against H in
terms of means, the computer averages the two sample standard deviations to
give an overall best estimate of the standard deviation, usually denoted s, where
p stands for pooled.® Even if the samples are really both drawn from the same
population, because of chance the means will not usually be exactly the same.
However, theory tells us that in this case

the ditference between the two means
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The components of this formula will be explained in a qualitative way, item
by item:

The n + m - 2 reflects the fact that we do not know the true spread of values from this
distribution, but we have in effect i — [ estimates of spread about the mean from the
first sample and n — | estimates from the second sample, giving n + 1 ~ 2 estimates
of variation altogether. As before, the quantity n + m — 2 is often referred to as the
degrees of freedom.

The | '/ reflects the fact that the variation of an average of m values is | '/uth as vari-
able as a single value.

The '/ + '/ reflects the fact that we are adding two sources of variation: variation in
the average of the first m values and variation in the average of the remaining n
values.

Overall, s, \ I/m + 1/n is a measure of how much variability could be expected in the
difference of the two means. so

the difference between the two means

I |

s
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is a measure of the size of the gap between the two means in comparison to how
much variability should be expected in this gap.

Again there is a range of “likely” results for the

the difference between the two means
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ort,,,_» values. As before, we can decide on a range of values so that 95
percent or 99 percent or whatever percentage of the time we will get a value
fort,,, ., within this range. If we get a value outside this range we will say to
ourselves we would “hardly ever” get such a value if the true means of the
populations were really the same, and so we therefore no longer believe that
the true means are the same (i.e., we reject the null hypothesis that the means
are the same). As always, we should if possible use our own judgment as to
what constitutes “hardly ever.” Is this something that happens only 20 percent
of the time or only 1 in 1,000,000 times? This is our benchmark p value. If we
have no strong feelings on the issue, we may use the conventional benchmark
p value of 0.05. The computer gives us the p value of results as extreme or
more extreme than the value obtained and we compare this with our bench-
mark p value. The computer generally gives the p value assuming a two-tail
test. This should be halved if a one-tail test is appropriate. This halving should
not be done blindly. It a one-tail test is appropriate but results point in the
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direction opposite to those favorable to H,, then the correct p value is 1 minus
half the two-tail p value (see the discussion in the section on one-tail and two-
tail tests on pages 75 and 76).

We now consider the possibility that we have decided that the standard
deviations are different and want to know whether we should believe that the
means are different as well. The underlying theory used here leads to similar
calculations to those already discussed, but the value obtained for

the difference between the two means
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s
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turns out to be approximately a value from a 7, distribution where *," is worked
out using a complicated formula. From this a p value is obtained and inter-
preted as before.

Overall, what we do can be summarized in simple language as follows. We
make a judgment about whether the two group averages are so far apart that
the difference between their averages cannot be reasonably put down to chance.
We can judge this chance, the p value, from the overall amount of scatter in
the values in the two groups.

For example, say that the hours and minutes of sleep were the same as
given in the example used in the previous section on the paired sample 1 test.
However, we interpret the values differently, so that the first row of numbers is
the amount of sleep for a representative sample of eight women and the sec-
ond row of numbers is the amount of sleep for eight men. In general, there
would be no need for the number of women and the number of men to be the
same. After selecting a file containing the data and clicking on “Independent
samples t-test,” the pds computer program performs the classical tests. The
one-line output is that the p value is 0.024077. Clicking on “moreinfo” tells us
that the p value for the test of equality of variances is 0.36639, the p value for
the test of equality of means assuming equal variances is 0.024077, and the p
value for the test of equality of means assuming unequal variances is 0.025756.
The program then uses the logic described earlier based on the idea that the
first two of these p values are both independent tests of whether the two groups
come from the same population. This results in an overall p value of 0.047575.
All p values assume two-tail tests. The program also gives further information
about the average difference in sleep.

Which of these p values is pertinent depends on our precise philosophical
approach to the situation. If the idea that we provisionally start with is that all
m + n values are drawn from the same unknown normal distribution and that
we are prepared to do just one test of the equality of means of the two groups
to see if we have convincing evidence against this idea, then the p value of
0.024077 is relevant, If the idea that we provisionally start with is that we are
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happy to concede that the standard deviations of the two groups are different
but we would still look for convincing evidence before deciding that the means
were different, then the p value of 0.025756 would be relevant. However, we
should note that there is no compelling reason to concede that the standard
deviations are different, for the computer also tells us that if two samples were
drawn from two populations with the same underlying standard deviation,
then 36.639 percent of the time the pair of sample standard deviations would
be more different than the pair calculated here. If the idea that we provision-
ally start with is that all m + n values are drawn from the same unknown
normal distribution and that we are going to do two tests, one on means and
the other on standard deviations, to see if we have convincing evidence against
this idea, then the p value of 0.047575 is relevant.

It is left to us to come to our own conclusions. It might be reasonable to use
the traditional 0.05 benchmark here, as H, is convenient, but the alternatives
are not implausible. For me, it seems quite reasonable to start with the belief
that men and women get the same amount of sleep on average, and the bench-
mark 0.05 may be appropriate because I would not want to be talked out of
this belief by very weak evidence; nor would I require very strong evidence to
talk me out of it. On the other hand, given the contentious nature of arguments
between the sexes, it may be reasonable to want stronger evidence (in other
words, a smaller p value) before making a pronouncement about differences
between the sexes. If we accept the 0.05 benchmark it doesn’t matter which of
the p values we look at—0.024077, 0.025756, or 0.047575—they are all val-
ues that satisfy our criterion for rejecting H,. If we accept the conventional
benchmark p value of 0.05, then on the basis of this experiment we should
now believe that there are differences in the length of time men and women
sleep. However, is it indeed reasonable to now believe that there is a differ-
ence in sleep between the sexes? The figures we have analyzed could be ex-
plained by saying, “There is no difference, it just looks that way on these
figures because a chance that would happen anyway a few percent of the time
actually came off in our experiment.” There is no objective answer to this
question. The p value calculation informs our assessment of whether the dif-
terence in sleep between the two sexes is “for real” by telling us how hard it
would be for coincidence to explain our results, but our decision is still sub-
jective. Statistical tests cannot give absolute, objective results.

DATA TRANSFORMATIONS AND PARAMETRIC
AND NONPARAMETRIC STATISTICS

The normal random variable results from adding many small chance contri-
butions. It does not result from multiplying chance effects or from other inter-
actions between chance effects. In nature, however, outcomes may be the result
of a mixture of some random effects that add in combination with other effects
that multiply or combine in more complicated ways, together with some ran-
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dom effects that are very large in comparison 1o most of the others. In such
situations, the end result in terms of the pattern of randomness may not be
particularly close to the pattern of a normal distribution. However, the normal
distribution often seems to be a good approximation to many common situa-
tions where a continuous spectrum of numbers is possible, with values toward
the middle of the range being much more likely than values toward either
extreme. The common tests discussed in this chapter focus on the values likely
to be taken by a sample average, and the central limit theorem tells us that
such sample averages will generally give a much better approximation to a
normal random variable than the original data.

Nevertheless, it is almost never possible to be sure that we are dealing with
a situation in which the data values or even the sample mean come from an
underlying distribution that is close to a normal distribution. If we were pur-
ists, we might avoid assumptions about the underlying distribution and use the
statistical methods of the sort introduced in Chapter 4, which depend on just
the order or ranks of the data and not on their actual values. These methods,
such as the sign test, the Wilcoxon signed rank test, and the Mann—-Whitney
test, are valid regardless of the underlying distribution. However, since these
methods ignore the actual values they do not use all the information in the
data. This means that when there is an underlying normal distribution these
methods are less efficient at detecting real differences. Since these methods
do not depend on assuming that there is a particular distribution underlying
the data and do not concern themselves with the normal distribution and its
parameters p and o, these methods are often referred to as distribution-free
statistics or, most commonly, as nonparametric statistics.

While a purist might want to always use nonparametric statistics at the cost
of some efficiency, the opposite approach is to always use tests based on the
normal distribution. When there really is an underlying normal distribution,
the tests based on the normal distribution are more efficient because they take
into account the actual data values, not just the ranks. However, these tests are
only valid if there is an underlying normal distribution. For reasons already
discussed, in many situations there is, at least approximately, an underlying
normal distribution, and tests based on the normal distribution will give p
values that would be close to the true p values. However, it is not valid to
blindly assume that if we are dealing with a continuous random variable we
are always dealing with a normal distribution. Such an approach is wrong. It
can lead to very inaccurate p values and hence wrong decisions.

Checking Whether Data Come from a Normal Distribution

The widely used compromise approach is to check that it may be reason-
able to assume that the data come from an underlying normal distribution
before applying the statistical tests based on the normal distribution. This can
be done in various ways.
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Simple Display of the Data

If line plots, box plots, or histograms show that the data seem clustered
more or less symmetrically about a central value with values toward the ex-
tremes being increasingly rare, the assumption of a normal distribution may
be reasonable. Often, this is the only method of checking normality used in
practice.
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Histogram of 100 values

In the example here, the values were actually obtained from a normal distri-
bution. Superimposed on the histogram is the curve of a normal distribution
with the same mean and standard deviation as the data.

More Sophisticated Visual Indicators of Normality

There are more sophisticated visual indicators of normality that go under
the headings of P—P plot and Q-Q plot and that provide a visual comparison
of the spacing of data values compared to the spacing of values obtained evenly
in probability terms through a normal distribution. Normality is indicated by
an approximate straight line on these plots (see Figure 5.3).

OPTIONAL

To explain Q-Q plots further, imagine we have chosen 100 values from a
normal distribution. Place these values in ascending order. Going along this
list should be like going along a normal distribution in the sense that halfway
along the list of values should be roughly equivalent to halfway along the
normal distribution in terms of probability. Similarly, the 86th value should be
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Figure 5.3
IMlustration of PP and Q-Q Plots
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roughly equivalent to 86 percent of the way along the normal distribution in
terms of probability, or in general, y percent of the way through the values
should be roughly equivalent to y percent of the way along the normal distri-
bution in terms of probability. We can use this principle to find a value from
the normal distribution, z, that corresponds in terms of amount of probability
behind it, to each data value x,. If the data come from a normal distribution and
we subtract an estimate of the mean from the data values and divide by the
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Figure 5.3 (continued)
Normal P-P Plot of Uniform Random Variable
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estimated standard deviation, we will have roughly converted the data values
into values chosen from a standard normal distribution. Therefore, there should
be a rough match between values of

X —-Xx

i

s

and corresponding values of z,. For example, the 86th biggest of 100 data
points should correspond to the z,, value of 1.08 since this is 86 percent of the
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way through the standard normal distribution. Therefore our 86th data value
should roughly satisfy the equation

Xy — X

= 1.08.
$

This equation can be rearranged to give x, = s x 1.08 + ¥. This manipulation
can be performed for each data value to give x, = s Xz, + Xorx, = o X 7, + .
Since this is the equation of a straight line, plotting the values of x; and the
corresponding z, should give an approximate straight line. This plot is known
as a Q-Q plot. If the x; do not come from a normal distribution, the Q-Q plot
will tend to deviate from a straight line.

The P-P plot is based on the same principle, but the axes are marked in
terms of proportions along the sample and the best matching normal distribu-
tion. In the P—P plot, the horizontal position of a data point gives the propor-
tion of values up to the given point, whereas the vertical position gives the
probability of obtaining less than the data value when selecting a number from
a normal distribution with the same mean and standard deviation.

A further issue here is in the detail of how we should define how far along
the distribution we are. We could be tempted to define the first or the last value
of the distribution to be 0 percent or 100 percent of the way along, but 0
percent and 100 percent of the way along a normal distribution is ~% and +°,
respectively. We see that defining starting or finishing percentages of the way
through the sample distribution as 0 percent or 100 percent and then trying to
get these to correspond to positions in a normal distribution won’t be sensible.
There is no best answer here. One method is based on the idea that in some
sense a single value will “ideally” cut a distribution into two equal parts, two
values will “ideally” cut a distribution into three equal parts, and so on. This
principle applied to P-P and Q—Q plots is called Van der Warden’s method.

In the illustration of P--P and Q-Q plots, the two plots on page 133 represent
100 values that were selected by a method that ensures that all values between
50 and 60 are equally likely to be selected. Values chosen this way are said to
be values of a uniform random variable on the interval 50 to 60. For the 100
points from the uniform random variable on the interval 50 to 60, no observed
probability accumulates until we get to just over 50, whereas the matching
normal distribution “expects” some values here. The left-most point on the P—
P plot therefore has a higher expected value than an observed value. Values in
the very low 50s (more than two standard deviations away from the mean),
however, are more crowded than are “expected” by the matching normal dis-
tribution. Observed probability here therefore accumulates more rapidly than
expected probability and the line of points therefore increases in height rela-
tively slow. Conversely, the normal distribution “expects” points around the
mean of 55 to be relatively crowded compared to points from a uniform distri-
bution and so the line of points here increases in height relatively rapidly. The
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situation for the points in the very high 50s mirrors the situation in the very
low 50s. These considerations give the P—P plot its overall elongated “S” shape.
Similar considerations explain the shape of the Q-Q plot. By comparison, the
two plots on page 132 show values chosen at random from a normal distribu-
tion with the same mean and standard deviation as those from the uniform
distribution. These values give plots almost on the ideal diagonal straight line.

END OPTIONAL

Statistical Tests for Normality

There are statistical tests (e.g., the Kolmogoroff—-Smirnoff test or Lilliefors
test) to see if it may be reasonable to believe that data come from a normal
distribution. The underlying philosophy of these tests is similar to previous
tests that we have covered. They do not answer the main question, “Do these
data come from a normal distribution?” Instead, they answer the secondary ques-
tion, “Could a data set coming from some normal distribution easily have the
same single measure of its overall pattern as this data set?” If the answer to this
secondary question is “‘yes,” it is conventional to assume that it is reasonable to
believe that the data do come from a normal distribution. Of course, in particular
circumstances this convention may not actually be reasonable. The Komogoroft—
Smirnoff test can be related pictorially to P—P plots. It is, roughly speaking,
based on the greatest deviation of the P-P plot from the ideal straight line.

Using Common Sense

Finally, logic alone can tell us that certain data cannot be normally distrib-
uted. According to the normal distribution, values are centered around p and
values extending out more than one or two standard deviations on either side
are unusual, but it is possible, though very unlikely, for values to occur many
standard deviations on either side of w. Indeed, it is possible for values to
occur anywhere between — and +c. However, in many physical situations it
is absolutely impossible for values to occur outside a certain range. For ex-
ample, human height has to be a value greater than zero. If u for human height
was 170 cm and o for human height was 10 cm, there would be probability of
exactly zero of a person having a height smaller than 17¢ below the mean, whereas
the normal distribution says that there is a probability greater than zero (but ex-
ceedingly small) of such a height. In practice, height of adult humans of one gen-
der could have a distribution so close to the normal distribution that there is no
practical reason for assuming another distribution. However, this is not so true of
human weight, where the mean may only be three or four standard deviations
above zero: People 200 pounds above average weight are fairly unusual but not
impossible, whereas people 200 pounds below average weight cannot occur. It
would generally be inappropriate to assume that a normal distribution is a rea-
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sonable approximation when the mean is less than two standard deviations
above zero and values below zero are physically impossible.

Procedure if Data Are Assumed to Be Normally Distributed

If the data consist of values of continuous variables and there is no good
reason to think that the data do not at least approximately come from a normal
distribution, statistical tests based on the normal distribution are generally used.
The normal distribution is assumed for two reasons. It is at least approxi-
mately true that many sorts of measurements are approximately normally dis-
tributed. This is a consequence of the central limit theorem. The alternative to
assuming a particular distribution, such as the normal distribution, is to use
nonparametric tests of the sort discussed in Chapter 4, but this wastes a lot of
information, using only the rank order of the data and not the actual values.
Ideally, interpretation of the probabilities obtained from tests based on the
normal distribution should then be tempered by some knowledge about the
size of the inaccuracies that are likely to arise if, despite appearances, the
underlying distribution is not normal.

Procedure If Data Are Assumed Not to Be Normally Distributed

If the data do not appear to come from an underlying normal distribution,
there are two approaches to choose from. The first approach is to use nonpara-
metric statistics. The second approach takes its inspiration from the observa-
tion that the lognormal distribution can be turned into a normal distribution by
taking logs and from the observation that whereas the normal distribution or at
least a close approximation to it seems to be the most common distribution in
nature, the second most common distribution in nature is the lognormal distri-
bution. The second approach is then to try taking the logs of the data to see if
it might be reasonable to assume that the logs of the data values come from a
normal distribution. If so, statistical tests based on the normal distribution are
performed on the logs of the data values. This second approach can be taken
further. If it is not reasonable to believe that either the original data or the logs
of the data values have an underlying normal distribution, other mathematical
manipulations of the data values are used. For example, we can look to see if
square roots of all the data values could be reasonably regarded as normally
distributed, do the same with reciprocals of each of the data values, or use
some other mathematical manipulation of all the data values. This process is
called data transformation. The aim is to find a transformation that makes it
“look like” the transformed data are normally distributed. Once this is achieved,
it is assumed that the transformed data are in fact normally distributed and
statistical tests based on the normal distribution are applied to the transformed
data. This approach may seem rather contrived, but nevertheless is quite com-
monly used.
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SUMMARY OF STATISTICAL TESTS SO FAR

This section summarizes the situations in which the various statistical tests
that we have described up until this point should be used. Most of the statisti-
cal tests covered so far are designed to help answer the question, “Is there a
difference?” This question is asked in various contexts according to the source
of the data and the different types of data:

Source of data Dichotomous Numerical Numerical
(e.g., better but not and normal
or worse) necessarily data
data normal data

Two related measures (e.g., Sign test Wilcoxon Paired samples

measures before and after an signed rank I test
intervention on the same test

individual, or measures on one
twin who had an intervention
and the other twin who didn’t)

A single measure on two Fisher’'s exact ~ Mann- Independent
unrelated samples (e.g.. test Whitney test samples
measuring the same quantity I test

on men and women)

These tests are perhaps the main tests in basic statistics. However, in devel-
oping the theory of these tests we have also dealt with other tests. These in-
clude the following:

* The use of the binomial random variable to test an hypothesis about the proportion
in the population.

= The use of the Poisson random variable to test an hypothesis about the value of the
parameter A or the average rate at which something happens.

* The use of the z test to test whether a single value or the average of a number of
values comes from a normal distribution with p and o specified.

* The use of the single sample 1 test to test whether the average of a number of values
comes from a normal distribution with just p specified.

* The use of the Komogoroff—=Smirnoff test to test whether data are normally distributed.

Once again, note that none of these tests directly answer the relevant question,
“Is there a difference?” Instead, they answer the question, “Assuming there is no
difference, how hard would it be for chance alone to explain the data?”

QUESTIONS

1. The demand for electricity in megawatts at peak load on any given day is said to
be described by a normal random variable with expected value 90 megawatts and
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standard deviation 10 megawatts (variance 100 megawatts squared). If this de-
scription of the demand for electricity is correct, what generating capacity must
be available in order that the load be met 99.5 percent of the time?

2. Allsenior high school students in a certain state take a test on which the statewide
results are approximately normally distributed with mean 60 and standard devia-
tion 10. A random selection of sixty-four test results is chosen.

a. What is the probability that the average of the sixty-four test results will be
below 577

b. What is the probability that a school with sixty-four senior students will score
an average result of less than 57?

3. Assume that in healthy American men the level of hemoglobin is normally dis-
tributed with mean p = 14 and standard deviation g = 1.1.

a. What is the probability that a healthy man chosen at random will have a hemo-
globin of (i) exactly 14, (i) between 14 and 15, or (iii) over 16.

b. A laboratory wants to check the accuracy of its hemoglobin measurements. It
therefore measures the hemoglobin of 400 healthy men, reasoning that the av-
erage of these measurements should be very close to the long-run average, which
is known to be u = 14. If their method of measurement is accurate and the
assumption that p = 14 and the standard deviation o = 1.1 is also accurate, what
is the probability that the average hemoglobin of 400 healthy men will be less
than 13.9?

c. Blood is obtained from a single randomly selected healthy man from Papua
New Guinea (PNG). The hemoblobin level is 10.7. Do you now believe healthy
men in PNG have lower hemoglobin levels?

4. Two different brands of racing bicycles are tested by five cyclists. The top speeds
attained are given in the following list. Is there convincing evidence that one
brand is superior?

cyclist 1 cyclist2  cyclist3  cyclist4  cyclist5  cyclist6
Brand A 30.5 41.2 29.8 35.9 25.7 40.3
Brand B 303 46.3 36.1 40.1 35.2 40.0

5. The time from purchase until major repairs are required is recorded for eight cheap
bicycles and five expensive bicycles with the following results in days: cheap
bikes—39, 117,561, 57, 3, 27, 8, 2; expensive bikes—289, 641, 105, 111, 903.

a. Is it reasonable to perform a parametric test (test based on a normal distribu-
tion) on these figures?

b. Regardless of your answer to a, perform a parametric test; in addition, perform
a nonparametric test.

c. Do you believe that cheap bikes last as long as expensive bikes? Discuss.

NOTES

1. The terms and symbols here may be unfamiliar to those who have not completed
high school mathematics. Exponentials and logs are ways of turning one number into
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another and back again, just as squares and square roots turn one number into another
and back again according to some rule. In the case of squares, the rule is “multiply the
number by itself.” In the case of exponential to base 10, the rule to convert, say, the
number 5 would be to write down five “10s” in a row and put multiply signs between
them. Exponential to base 10 of 5 is therefore 10 x 10 x 10 x 10 x 10 or 10° or 100,000.
Log to the base 10 is the reverse procedure, so it will turn the number 100.000 back
into 5. For reasons that are beyond the scope of this book, it is often convenient to use
a number e, which is approximately 2.718, in place of the simple number [0 in these
procedures. When we simply write “exponential” and “log” and don’t specify to base
something, it is assumed that we mean to base e.

2. The expression “could easily” is taken as referring to a chance of more than 5
percent.

3. We could, however, use pairing, in that we could examine the length of sleep of
men and women who form married couples. However, married couples may not be
representative of the whole population of men and women. We could also match men
and women who have been randomly selected so as to obtain pairs of men and women
who are similar in age or some other attribute that might affect sleep, but we will
assume that it is not convenient to do this.

4. More precisely, the F test is based on the figure £, which is the ratio of the sample
variances of the two groups. If standard deviations are the same, f should be a figure
near 1, but values away from 1 will occur by chance. The F test calculates the prob-
ability or p value for obtaining a value of f at least as far away from 1 as the observed
value, assuming the underlying population variances of the two groups are in fact
equal.

5. A special weighted form of averaging or pooling is used: s, is obtained from a
weighted average of the sample variances where the weightings used depend on the
number of measures of spread in each of the samples. Other methods of estimating the
amount of spread in the system could be used (e.g., the overall sample standard devia-
tion could be calculated), but theory shows that it is only the use of s, that will lead to
values from a ¢ distribution.
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CHAPTER 6

General Issues
in Hypothesis Testing

The preceding chapters, as well as explaining the basis of the most common
statistical tests, have strongly criticized the unthinking use of these tests in
decision making. This chapter goes into more detail about general issues with
hypothesis testing.

SELF-CONTRADICTORY IDEAS
UNDERLYING THE NULL HYPOTHESIS

Hypothesis testing starts with a null hypothesis: the hypothesis that the inter-
vention has no effect on what is being measured. The figures are then examined to
see if they provide evidence against the null hypothesis. This is the basis of an
approach to scientific decision making that is entirely objective. It lets the figures
alone provide the evidence. Recall that an objective approach to decision mak-
ing was the fundamental aim of the inventors of statistics. However, the null
hypothesis raises a set of ideas that are almost self-contradictory:

1. The null hypothesis is what we would prefer to believe in the absence of any
evidence to the contrary.

2. The null hypothesis is something that we often hope is not true, for the way statis-
tics tells us to “prove” that our new treatment works is to tell us to pretend that it
doesn’t work and then to see if the evidence talks us out of this null idea.

3. The null hypothesis is that the intervention has had absolutely zero effect, for
apart from zero what other size effect would be natural to choose in any situation?
Choose we must, for we use the null hypothesis to calculate a p value.

4. The null hypothesis is almost always a fiction. Almost all interventions will have
some effect. The effect may be very small, or not worth having, but it will rarely
be exactly zero.



142 Statistics with Common Sense

Given these almost self-contradictory ideas involved in the null hypothesis,
it seems odd to base scientific decision making on this hypothesis testing ap-
proach. The developers of statistics proposed a range of responses to cope
with this criticism. Some of the responses are easy, perhaps too easy, and
don’t properly address the difficulties.

Responses to the Self-Contradictory Ideas
Underlying the Null Hypothesis

Prudent Conservatism

The easy response to the near contradiction between ideas 1 and 2 is that
hypothesis testing leads to a conservative approach to assessing the benefits of
new treatment, the approach of “don’t believe in anything new until you have
to.” Perhaps this is a wise approach, as there has been a history of overenthu-
siastic adoption of new treatments that haven’t lived up to expectations and
have sometimes turned out to be dangerous.

By good fortune there have been other benefits in the medical area from an
unthinking blind adherence to the conservatism inherent in the use of null
hypotheses. It has enabled ethics committees that have unthinkingly accepted
the null hypothesis approach to declare as ethical some ethically doubtful clini-
cal trials of new treatments and so has allowed these trials to proceed. This has
led to more certain knowledge of the effectiveness of the new treatments. For
example, say that there is a disease that is known to have a probability of ¥2 of
killing someone using the standard treatment. A new treatment has been pro-
duced and it has been tried out on four people with the disease, all of whom
survived. Now you find that you have the disease. Which treatment would you
want? 1 think any person whose common sense hadn’t been misled by an
inappropriate statistics “education” would want the new treatment. However,
those on the ethics committees have had some statistics “education.” They
will calculate the p value for the new treatment from the information that four
out of four got better. If the new treatment was no better than the standard
treatment, this result would occur ¥2 x ¥2 x V2 x V2 = (0.0625 of the time, so this
is the p value (assuming a one-tail test) (in the terminology of Chapter 4, we
have found the probability that a binomial random variable Bi[4, Y2] takes the
value 4). Since 0.0625 is greater than 0.05, the ethics committee would de-
clare that although it is clear the new treatment deserves further study, there is
“no evidence” that the new treatment is worthwhile. Of course, the “no evi-
dence” here should be replaced by “no convincing evidence,” or even more
appropriately by “some evidence, but not really convincing evidence.” With
this misunderstanding of the logic of statistics, it is then possible for the ethics
committee to authorize a study on a larger number of humans with the dis-
ease, comparing some who get the new treatment with some who don’t, with-
out feeling guilty that those assigned to get the standard treatment may well be
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getting inferior treatment. The end result may be unfortunate for those pa-
tients in clinical trials who get the inferior treatment when there was already
some evidence that it really was inferior treatment. On the other hand, there
will be a long-term benefit in terms of the overall certainty of knowledge in
medical practice.

However, there is another side to the story regarding the long-term benefits
to medicine of statistical dogma. There are a huge variety of medical condi-
tions and a large number of interventions that could be used with any of them.
It would be almost impossible to do proper research studies and statistical
analyses to check the effect of each possible intervention on each possible
condition. Apart from the problem of the large number of studies required,
there would be difficulties because of the amount of individual variability in
the patients. This variability means that large numbers of patients would often
need to be studied before interventions that have only small benefit stand out
unequivocally as having an effect. Getting permission from ethics committees
and permission from sufficient numbers of patients would be a problem, par-
ticularly in situations where it may be clear to both the ethics committees and
the patients that common sense dictates that the intervention must be of some
benefit. As a result, many interventions that common sense indicates almost
certainly work have not been studied or have been studied using an insufti-
cient number of patients. Since these interventions have not produced a p value
less than 0.05, they are, at best, labelled as unproved. At worst it is declared
that such interventions are of no value.

This is a huge practical problem in medicine. For almost every medical
condition there will be a number of interventions that have been traditionally
used and that common sense would indicate would be likely to be of at least
some small benefit, but which have not resulted in a p value of less than 0.05
in research studies. Throughout medicine, “scholarly” education material for
doctors contains simple assertions that such interventions are of no value. As
a result, throughout medicine it becomes almost impossible to learn what an
expert who used both common sense and a knowledge of the data from re-
search studies would think was appropriate treatment.

A particularly dramatic example of the obsession with p values at the ex-
pense of common sense is the issue of hygiene in medicine. It has become
commonplace for doctors to neglect cleaning the skin prior to injections. This
neglect of basic hygiene is the result of the publication of recent statistical
studies that have shown “no difference” in the infection rate between injec-
tions given into skin that has been cleaned and skin that hasn’t been cleaned.
However, we have known that cleaning prevents infection in other situations
since 1848. In that year an obstetrician, Semmelweiss, convinced his colleagues
that washing hands between the time of doing an autopsy on a woman who
died of infection following childbirth and the time of delivering a baby from
another woman prevented deaths from postchildbirth infection. Semmelweiss
convinced his colleagues of this by cleaning his hands on a number of occa-
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sions between the postmortem room and the labor ward and deliberately not
cleaning his hands on other occasions. At a considerable cost in women’s
lives, he thereby gathered enough evidence to convince his colleagues (this
cost in lives is discussed in more detail later). Since Semmelweiss’s time the
discovery of germs has also provided a theoretical understanding of why clean-
ing ought to be useful in preventing infection in any situation. It should therefore
be unnecessary to test the null hypothesis that in the situation of needle pricks,
cleaning has no effect on the chance of infection. This really is a totally inappro-
priate null hypothesis, so the recent studies should not have been done. Those
involved in such studies have divorced themselves totally from common sense.

Common sense since the nineteenth century had dictated that cleaning in
any situation almost certainly helps prevent infection. In some situations it
may make only slight differences. A slight increase in the rate of infection
might not show up as “statistically significant,” even in an experiment involv-
ing several thousand injections. Since infections are rare even following injec-
tions into uncleaned skin, there will be only a few infections in an experiment
involving thousands and it may well be possible to blame the difference in the
infection rate with and without cleaning on the sort of chance that occurs
more often than 5 percent of the time. But infections can be extremely serious.
Even a very small increase in the infection rate justifies the trivial costs of
cleanliness. Itis certainly not positive for knowledge in medicine that we should
regard this common sense as unproved and of no value until a p value of less
than 0.05 has been obtained in testing a null hypothesis.

The letters pages of the September 2001 issue of the Medical Journal of
Australia (175: 341-342) gives an example of the breadth of misunderstand-
ing regarding the use of statistics to make decisions about the value of clean
injecting techniques.

Convenient Fiction

The near contradiction between ideas 3 and 4 concerning a null hypoth-
esis—that the null hypothesis is the hypothesis of zero effect but an interven-
tion will almost always have at least some tiny effect—can be brushed aside
by saying that the null hypothesis is a convenient fiction. Almost all interven-
tions may have at least some tiny effect, but in some cases the effect will be
negligible and not worth knowing about and in other cases the effect will be
important. We can hope that often an experiment will not find convincing
evidence against the null hypothesis where the effect is negligible, but will
find convincing evidence when the effect is important. How easy it is for an
experiment to find convincing evidence that an intervention makes a differ-
ence depends on the background variability, the size of the difference made by
the intervention, and the number of measurements. This is discussed in more
detail later. For the moment, we note that our hope that our experiments will
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pick up large, important differences and overlook trivial unimportant differ-
ences will partly depend on the number of measurements made. Hopefully,
most experiments involve numbers of measurements that will usually allow
important differences to be detected but will usually miss unimportant differ-
ences. However, no general rule about the appropriate numbers of measurements
is possible because the background variability and the size of the difference that
we regard as important will affect the requirements. Therefore, there is no
insistence in the philosophy of statistics about using appropriate numbers of
measurements before arriving at conclusions about the null hypothesis.

We started with the criticism that the ideas behind a null hypothesis are
almost self-contradictory, so starting with a null hypothesis seems an odd ap-
proach to scientific decision making. We have seen two easy responses to this
criticism. The first response is that this approach to decision making leads to a
conservative approach to assessing whether we should believe in the effec-
tiveness of new interventions and that a conservative approach is often a good
thing in the long run. The second response is that although the null hypothesis
is a convenient fiction, experiments of the right size will often lead to useful
conclusions about which effects really matter. However, we have seen that
these responses are rather too easy. In the case of the first response we have
seen that conservatism doesn’t always match common sense, and in the case
of the second response we have seen that there is no guarantee that our experi-
ments will be of an appropriate size.

Don’t Believe in Hypothesis Testing

The inventors of statistics prepared two more responses. The last of these
responses is the topic of a following section: confidence intervals. The other
response can be summed up as, “Don’t believe in hypothesis testing!” Some
elaboration is required here, of course. In hypothesis testing we start with the
null hypothesis H,, and see if there is sufficient evidence to talk us out of this
null hypothesis. If there isn’t, the correct conclusion, according to the advo-
cates of statistics, is not to say “we believe in H,”; instead, the form of words
we should use is “we have insufficient evidence to reject H,.” If, on the other
hand, we do have sufficient evidence to talk us out of the null hypothesis,
evidence in the form of a p value of less than 0.05, we do state “we reject H,.”
However, the founders of statistics were keen to point out that this is still just
a provisional statement. An outcome from the experiment has occurred that, if
H, were true, would be regarded as exceptional, something that occurs less
than one in twenty times. However, something that occurs only one in twenty
times will still sometimes occur, so our conclusion that this is evidence to
reject H,, should be regarded as only provisional. Unfortunately, the caution
advocated here is often forgotten, and firm conclusions are instead drawn on
the basis of whether p is greater or less than 0.05.
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ERRORS

Since hypothesis testing consists of deciding between H, and H, in the face
of a background of variability and with a limited number of measurements,
wrong decisions are inevitable. A more detailed discussion of these wrong
decisions or errors is useful here.

There are two types of errors. A Type I error occurs when we conclude that
H, is true when really H, is true. A Type 1l error occurs when we conclude that
H, is true when really H, is true. The size of the Type I error is up to us, and
conventionally we set the size of the Type I error as 0.05. This is equivalent to
stating our benchmark p value is 0.05 (other terminology sometimes used is
that the significance of the test is 0.05 or that the o level is 0.05). Why not set
the Type I error to be zero? After all, we don’t want to make any errors. A
Type I error of 0.05 means that we will blame chance for any evidence that
points toward the truth of H, unless it is the sort of chance that occurs less than
0.05 of the time. If we set zero as our Type I error it would mean that we
would blame chance for any evidence that points toward the truth of H, unless
it is the sort of chance that occurs less than zero of the time. In other words, no
matter what the evidence, we would always believe in H,. When H, happened
to be true we would always get it right. However, when H,, happened to be
false the evidence that it was false would always be explained away by saying
H, is true, but it just doesn’t look that way because a series of coincidences
came off. When H, is true, we would always be making a Type Il error. In the
presence of uncertainty, we have to allow ourselves to sometimes be wrong
when H,, turns out to be true so as to allow the possibility that we can be right
when H,, turns out to be false. In general, the more we want to make a smaller
Type | error (i.e., when there are no real long-run differences, we want to
blame chance for all but the most extreme differences in our samples), the
more likely we are to make a Type Il error (i.e., when there are real differ-
ences, we will be more likely to wrongly believe that there is no real long-run
difference and blame chance for the differences seen in our samples). There is
a trade-off between the two types of errors.

The size we set for the Type I error is one of the factors determining the
probability of a Type II error. There are three other factors: the background
variability, the number of measurements, and the size of the difference made
by the intervention. Why? Recall that a Type Il error is made when H, is true
but starting from an initial assumption that H, is true we find insufficient evi-
dence to talk us out of this incorrect belief. This can occur if there is a lot of
background variability so that the evidence being obtained can easily be ascribed
to chance effects. It can occur if only a few measurements are made so we can
easily blame results in favor of H, on a combination of just a few odd chances.
Third, it can occur if H, is not very different from H,, so that results produced
as a result of H, being true will not be convincingly difterent from those that
would have been produced if H,, had been true. In general, the only factor we
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can control here is the number of measurements. Usually, the only way to
lower both Type I and Type II errors simultaneously is to use more data.

Other terminology is sometimes used here. The size of the Type Il error is
sometimes given the symbol 3, and 1 — 3 is called the “power” of the test. The
power of the test is its chance of giving the answer that H, is true when in fact
H, really is true. It follows that the power of the test is improved in the follow-
ing situations:

1. If we are prepared to accept a larger Type I error (for example, we may set the
benchmark p value to be larger than 0.05).

2. If there is less natural variability.
3. If there is a greater number of measurements.

4. If the effect of the intervention is large.

Ideally, experiments should be designed so that they have the power to gen-
erally detect differences that matter. On the other hand, for the sake of economy
the numbers in the experiment should be limited so that the experiment need
not have the power to usually detect differences that do not matter. Where the
effect of the intervention is minimal, we will get results that make us reject H,
hardly any more often than would have occurred if H, really had been true,
since our true H, is almost identical to our assumed H,. In other words, the
minimum power occurs when the intervention is of minimal effectiveness and
this minimum power is the value of the Type I error or a.. The power increases
as the distance between H,, and H, increases until, when they are so far apart
that they give unmistakably different results, the power is 1.

These definitions can be summarized in the following way:

Decide H, is correct Decide H_ is correct
H, truly correct (l-—a) Type L error (o)
H, truly correct Type 1l error () Power (1 - B)

There is a direct analogy here between hypothesis testing and medical test-
ing. Specificity is the chance of a test telling us the person doesn’t have the
disease when in fact the person doesn’t have the disease. In other words, it is
the probability of the test indicating the correct decision when there is no
disease. This is equivalent to the chance of not making a Type I error (i.c.,
specificity is equivalent to 1 — a). Sensitivity is the chance of a test telling us
a person does have the disease when in fact it is true that the person does have
the disease. Sensitivity is equivalent to the power of the test:

Test indicates patient has Test indicates patient has
no disease the disease

Patient truly has no disease ~ Specificity
Patient truly has the disease Sensitivity
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THE USE OF P VALUES AND COMMON SENSE IN
HYPOTHESIS TESTING

The end result of all our statistical calculations to date has been a p value.
Recall that our main question goes something like this: “Here are two groups.
One group has had an intervention and the other group hasn’t. The measure-
ments on the two groups are not exactly the same. It looks like the interven-
tion could have made a difference, but on the other hand the difference could
be accounted for just by coincidence. What then is the cause of the difference?
Is it for real, or does it just look that way because of coincidence?” The p
value does not give us an answer to this main question. Instead, it gives an
answer to the secondary question: “If we're going to blame coincidence for
the difference, what sort of coincidence are we talking about?”

If we assume that it is coincidence alone that accounts for the difference
and we then calculate that it is a very long coincidence that is needed to ac-
count for the difference between the two groups, it may be more reasonable to
stop assuming that it is coincidence alone. Instead, we should now decide that
the difference is there because the intervention makes a difference. A long
coincidence here is traditionally taken to be the sort of coincidence that would
occur less often than one in twenty times (i.e., p = 0.05).

However, it has been repeatedly emphasized that it is not always reasonable
to use the traditional p value of 0.05 as a benchmark in deciding the answer to
the main question. Sometimes the main question is stupid, as in the case of
infection and cleaning the skin. We should never allow ourselves to blame
chance for any difference in the infection rate after injections into cleaned
skin compared to injections into uncleaned skin. Sometimes, while we may be
prepared to believe in the null hypothesis initially, we may require only very
weak evidence before giving it away. If I was only a bit skeptical about the
ability of a relaxation tape to enhance sleep and I gave the tape to three people,
all of whom said it improved their sleep the night they listened. then I would
prefer to believe that the tape worked. Here, the p value is Y2 x V2 x 12 =0.125
(to calculate p we are assuming that H,, is true—that the tape doesn’t work at
all—so it is a 50-50 chance [a probability of 2] that each person will say
better, and this chance has to come off three times in a row; hence, Y2 x 12 x
12). While without any evidence my best guess is that the tape doesn’t work,
I’'m not strongly of that view. After seeing the result of a p value of 0.125, 1
think it would be more reasonable to believe that the tape works to improve
sleep rather than thinking that it just seems that way because of a 0.125 chance
coming off. On the other hand, sometimes I may believe strongly in H,. Even
if the next-door neighbor’s child correctly guessed a number between 1 and
1,000 that I had written down in secret, [ would rather believe that it was a
fluke and not that the child is clairvoyant. Therefore, the benchmark p value
for me to change my mind in this situation would be less than 0.001. We
therefore see that one of the factors in choosing the benchmark p value (the p
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value that is just sufficient to convince a person about the alternative hypoth-
esis) is our prior ideas about the relative chance of H, being correct versus H,
being correct.

Another factor we should consider is the consequences of being right or
wrong. Recall that there are two ways we can be right and two ways we can be
wrong, depending on whether H, or H, is actually correct or incorrect (see the
previous section). Now consider Semmelweiss and the washing of hands and
imagine we are living in the mid-nineteenth century. If hand washing had
really turned out to be of no benefit but in error (Type 1) we decided it was of
benefit, then we would be forcing doctors to wash their hands unnecessarily:
This is a rather trivial cost. If, however, hand washing turned out, as we now
know it has, to be of great benefit and we had decided in error (Type II) that it
was not of benefit, then we would have incurred a great cost in human life. In
the situation of Semmelweiss, the cost of making a Type I1 error was much
greater than the cost of a Type [ error.

Semmelweiss’s colleagues should have taken this into account and should
not have done as they did and forced Semmelweiss into prolonged human
experimentation at considerable cost in human life before accepting that hand
washing was worthwhile. We see from this example that in judging the evi-
dence, as well as taking account of the p value and our prior ideas of the relative
likelihood of H,, and H,, we should also take into account the costs of errors of
both types. In general, we will do this in a subjective way. However, there is a
branch of mathematics called decision theory that allows us to make the best
decision on the basis of estimates of probabilities and costs and benefits.

CONFIDENCE INTERVALS

Hypothesis testing was the first approach of the founders of statistics to an
objective method of decision making. However, we have seen that there are
philosophical difficulties to this approach, in that the null hypothesis has to
satisfy a near contradictory set of ideas. The various responses to these philo-
sophical difficulties that we have discussed so far are not completely satistac-
tory. There are also serious practical problems in making decisions using
hypothesis testing if p values are not properly understood and interpreted in
light of a lot of common sense. A more comprehensive response to the philo-
sophical problems ot hypothesis testing is provided by the idea of confidence
intervals. The theory and the calculations of confidence intervals follow di-
rectly from hypothesis testing, but the confidence interval approach does away
with the null hypothesis and its attendant philosophical problems. Unfortu-
nately, though, serious problems of interpretation remain if the confidence
interval approach is used in making decisions without incorporating under-
standing and common sense.

To explain confidence intervals, consider the single sample 7 test. We will
look at an example where we use this test in decisions concerning the average
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height of adult American women. We will compare the hypothesis testing ap-
proach and the confidence interval approach for the same data. For example,
our hypothesis might be that the average height of American women is 170
cm and we may use the benchmark p value of 0.05 as our measure of how
strongly we should hold on to this hypothesis. We note the arbitrary nature of
both the hypothesis and the benchmark p value without further comment here.
Let us say that we now choose two women at random from the population and
find that their heights are 139 cm and 141 cm, so that the average height of our
sample is 140 cm. We first look at the hypothesis testing approach. From Chap-
ter 5 we know that under certain common circumstances, the formula

F-p
X/\ n
gives us a value chosen from a ¢ distribution. In effect, this tells us to calculate

the distance of the sample average from the hypothesized true average (X — p)
and compare this to the estimated variability of our sample average

s

o
With two data values in our sample, theory tells us that the formula gives a
value from a ¢, distribution. The estimated standard deviation of the numbers

in this sample 18

\/(139—140)3+(I4]—I40)3 .

s = =.2,
2-1

so the estimated variability of our average (or estimated standard error or esti-

mated standard deviation of the mean) is

o2
Therefore, we can see that our sample average of 140 is 30 estimated standard
errors from the hypothesized mean of 170. The ¢, distribution shows that 95
percent of the time the average of samples of two values will be within 12.71
estimated standard errors of the true mean. We would therefore reject the hy-
pothesis that the true average is 170 cm using the p = 0.05 benchmark, since,
if 170 cm was the true average height of women, then 95 percent of the time
we would get an average for our sample of two in the range 170, give or take
12.71 estimated standard deviations of the mean, whereas our result of 140 is
30 estimated standard deviations of the mean away from 170. In other words,
in light of the variability we see in the sample, our average of 140 is the sort of
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average that would “hardly ever” occur if the true mean was 170 and so we
reject the hypothesis that the true mean is 170.
In the confidence interval approach we start with the same formula

X-u
s/\;

and the information that 95 percent of the time this gives a value in the range
—12.71 to +12.71. In our particular case, with

s

— =1,
N

we see that 95 percent of the time we would get a value of x such that x — p will
be in the range —12.71 to +12.71. Since in our case x = 140, we see that if u
was in the range 140 — 12.71 to 140 + 12.71 (or 127.29 to 152.71) then our
value of 140 for x would not be unusual. It would not be unusual in the sense
that if u was in the range 127.29 to 152.71, the value 140 for x would be a
value in the range of the more common values of X that can occur for such a .
With one of these values for y, our formula

T-p

N /\ ”
gives a t value in the range —12.71 to +12.71, the sort of ¢ values that occur 95
percent of the time. The range 127.29 to 152.71 is then referred to as a 95
percent confidence interval.

However, the terminology “confidence” is misleading. It almost implies
“probability” without actually using the word. But probability it is not. The
confidence interval calculation has used only part of the information that we
would need to be truly confident about where u might be. In the particular
example here, one would have to have no concept of measurement or Ameri-
can women to believe that there is a 95 percent chance that the true average
height of American women is in the range from 127 to153 cm. Almost every-
one knows that the true average height for American women is going to be a
figure much closer to 170 cm. By sheer chance, our sample happened to give
us a misleading idea of the average height of American women. Coincidence
has led us to pick a sample of two dwarves.

The occurrence of such coincidences should not completely override our
prior common sense ideas. Just because such a coincidence has occurred does
not mean that we should now believe that there is a 95 percent chance that the
average woman is between 127 and 153 cm tall. It would be more honest to
refer to 95 percent confidence intervals as 5 percent compatibility intervals, as
this terminology would emphasize that all that we have obtained is a range of
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possible values for p that are compatible with the data. By compatibility, we
mean that the data would not lead us to reject an hypothesis that pu was one of
the values in the range if we used a benchmark p value of 0.05 or 5 percent.
We need to take into account prior knowledge, if available, as well as compat-
ibility with the data before we can make a sensible statement about a probable
range for p. Unfortunately, defining our prior knowledge in precise terms and
incorporating this with the data is difficult. It also involves subjectivity: Dif-
ferent people are going to have slightly different prior ideas about likely val-
ues for the average height of women. Undertaking these tasks is the subject of
Bayesian statistics. Conventional or frequentist statistics leaves us with confi-
dence intervals. These should be understood as a range of values that is readily
compatible with the data, but confidence intervals are commonly misunder-
stood as representing probability intervals.

Let us now look in more detail at the method for calculating confidence
intervals in various situations. Consider our first and simplest test based on the
normal distribution. This was the test of whether we should believe that
Madagascans have the same height distribution as Americans based on the
observation of one Madagascan. Recall that our Madagascan was 150 cm and
that we were testing the hypothesis that the height of the Madagascan was a
figure chosen at random from the distribution that describes the heights of the
American population (i.e., N[ 170, 8]). Our hypothesis testing approach asked
whether the figure of 150 was the sort of figure we could “easily” get from
this normal distribution. We answered this question by noting that 150 would
come from a N(170, 8) distribution as often as

150 - 170
—°

would come from a standard normal or Z distribution and then noting that we
“hardly ever” (5% of the time) get figures from a Z distribution outside the
range —1.96 to +1.96. The confidence interval approach here does not assume
a particular value of 170 for u, but we use the value 8§ for o. We then ask what
values of u would allow our figure of 150 to be “easily” obtained. Using the
same manipulation as we used in hypothesis testing, this is equivalent to say-
ing that we want t so that

150 -
8

is the sort of figure that is “easily” obtained from a Z distribution. The figures
that are “easily” obtained from the Z distribution are figures in the range —1.96
to +1.96 in the sense that 95 percent of the time a figure chosen from a Z
distribution will be in this range. Therefore, saying that we want | so that
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150 — u
8

is the sort of figure that is “easily” obtained from a Z distribution amounts to
saying that we want p so that

150 —
8

is in the range ~1.96 to +1.96. Mathematically, this can be written as

150 -
196 < ———— < 1.96.

To deal with this, note that if two things are unequal, then if the two things are
multiplied by 8 they will still be unequal in the same way. This will also be
true if 150 is subtracted from both of them. Therefore

150 —
-1.96 < —g < 1.96.

can be rewritten as —1.96 x 8 — 150 <~ << 1.96 x 8 — 150; that is, —165.68 <
—u < —134.32. Now note that cancelling out minus signs from both sides of an
inequality reverses the inequality: —4 is less than (on the negative side of) -3, but
4 is greater than 3. Using this principle, our statement —165.68 < —u < ~134.32
becomes 134.32 < p << 165.68. The range of values 134.32 to 165.68 is then
our 95 percent confidence interval for the true long-run average height of
Madagascans based on our observation of a single Madagascan and our as-
sumption that the heights of all human populations are normally distributed
with o = &. If we wanted 99 percent confidence intervals, in these calculations
we would simply replace 1.96 by 2.576, as tables show that 99 percent of the
time figures we get from a Z distribution are inside the range —2.576 to +2.576.
These calculations can be written as

X-u
g

P(-1.96 < < +1.96) = 0.95.

Therefore
P(X-1960 <p <X+ 1.960)=0.095. ()

If it is known that the value of X in our experiment is x, there is then the
temptation to write

P{x—-1960 <u<x+ 1.960)=0095. (2)
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The range of values specified in the brackets in statement (2), x— 1.960 < pu <
x+ 1.960), is the 95 percent confidence interval for p. However, statement (2)
incorrectly states that there is a 95 percent chance that the value of p is in this
interval. Statement (2) does not follow from statement (1). Statement (1) is
valid in telling us where values of X are likely to be knowing p has a particular
value. It is not valid to twist this around to statement (2) about where p is
likely to be given a particular value of X. The incorrect jump in logic here is
analogous to a jump from a statement that “where there is smoke, there is a 95
percent chance of fire” to a statement “where there is fire, there is a 95 percent
chance of smoke.” In general, we cannot say that there is a 95 percent chance
of p being in the 95 percent confidence interval.

OPTIONAL s

The reason the leap from statement (1) to statement (2) is not valid can be
explained in other ways. Consider a number of drawers, each of which con-
tains some red marbles and some black marbles. Let us say that it is known
that in the first drawer 95 percent of the marbles are red. The statement, “Given
that we are choosing marbles from drawer 1, there is a 95 percent chance the
marble will be red,” is equivalent to statement (1). Now let us say we opened
an unknown drawer blindfolded and chose a marble and then found that it was
red. The equivalent to statement (2) would be the statement, “Given that we
have chosen a red marble there is a 95 percent chance that we have opened the
first drawer.” However, this statement would generally be wrong. The state-
ment would certainly be wrong if there were lots of drawers to choose from
and all but the first contained only red marbles.

Using the language and notation of Chapter 3, the difference between state-
ment (1) and statement (2) is the same as the difference between the probabil-
ity of A given B and the probability of B given A; that is, P(A|B) and P(BJA).
The relationship between these two quantities was given in the development
of Bayes’s rule. It is

P(A)

P(A|B) = P(BJA) x B

We will therefore have P(A|B) = P(B|A) only if P(A) = P(B). In this context, A
is a statement about where p is likely to be and B is a statement about where
data values are likely to be. P(A|B) is a statement about the probability of
being in the 95 percent confidence interval knowing the data values. P(BJA) is
a statement about the chance of data values being in a certain range given a
value of y, and in this context its value is 0.95. Therefore, the statement P(A|B)
= P(BJA) will in effect be a statement that the 95 percent confidence interval
has a 95 percent chance of containing the value of p. We see from the earlier
work that this last statement will only be true if P(A) = P(B). In this context,
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P(A) will generally only equal P(B) if the location of the data and the location
of the parameter p are both equally likely to be anywhere. If we have some
prior common sense ideas about where these values are likely to be, it will not
generally be true that the 95 percent confidence interval has a 95 percent chance
of containing the value of p. Instead, we should think of a 95 percent confidence
interval as the range of values for the parameter p that could “easily” have
resulted in the observed data. Here, “easily™ means that the data would not lead
us to reject a hypothesis about the value of p when our criterion for rejection is
that the data are outside the range that would occur 95 percent of the time.

Unfortunately, most statistics texts do not go through an explanation like
this to show why a 95 percent confidence interval does not necessarily have a
95 percent chance of containing the unknown parameter value p. Explanation
is omitted because it would involve statements about the likely location of the
parameter p. In the absence of data, this necessarily brings in statements about
the location of p that are not objective: that is, not based on data. The follow-
ers of frequentist statistics are so committed to objectivity that they won't use
any explanation that brings in any hint of nonobjective ideas.

A practical example may make these ideas clearer. Say a chocolate manu-
facturer knows that he will be breaking the law and may get into trouble if the
machinery that produces his 100-gm chocolate blocks is set to produce blocks
that in the long-run average have a weight less than 100 gm. Let us say that he
wants to check on his chance that he is breaking the law and so measures four
chocolate blocks. These weigh 101, 105, 102, and 100 gm. This gives the
mean x = 102 and s = 2.16. The theory discussed in Chapter 5 on the single
sample ¢ test tells us that

X—p

.\‘/\-;
is a figure from a £, distribution. If the machinery was set so that he just failed
to comply with the law, then p might be 99.999 and

X—p

.s‘/\ n

would then be

102 - 99.999
2.16/ 3

Figures as large as this from at, distribution occur about 8 percent of the time.
We could therefore say that if he was only just breaking the law he would get
data that were misleading, in the sense of being at least as favorable as the data
he got, 8 percent of the time. Similar calculations show that if he was breaking
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the law to the extent that his u was 98.6 rather than 100, he could still get data
at least as favorable as the data he got 2.5 percent of the time.

However, it is not logical to reverse these statements. The manufacturer
can’t look at these figures and say that there is an 8 percent chance that he is
Jjust breaking the law and a 2.5 percent chance that he is breaking it to the
extent of having his machine set to 98.6. This would be illogical in the same
way that the reasoning described earlier is illogical in the experiment in which
a random drawer is selected and a random marble chosen. Knowing that 8
percent of the marbles in one particular drawer are red does not mean that if a
red marble is obtained then there is an § percent chance that particular drawer
has been chosen. More generally, the manufacturer could note that 95 percent
of values from a ¢, distribution are between —3.182 and +3.182. The 95 per-
cent confidence interval here is then given by the inequality

102 — 1
3182 < — < +3.182,0r 98.6 < . < 105.4.

2.16/

However, all this is answering the wrong question for the manufacturer. He
wants to know, given the data, what the chances are that he is breaking the
law. All that frequentist statistics can give him is the answer to the reverse
question, “If he is breaking the law by a certain amount, what are his chances
of getting the misleadingly favorable data he got?” Frequentist statistics does
not allow him to jump from an answer to the reverse question to an answer to
the original question. He could do so only if he had some prior idea about how
badly he may have broken the law.

In particular, suppose that somehow the manufacturer, prior to measuring
the sample, had reason to believe that there was a 90 percent chance that his
machine was set to give an average block size of 99.999 (*av99999”) and a 10
percent chance that it was set to give an average block size of 102.0 (*av102”).
Maybe the manufacturer has just bought the chocolate factory from another
businessman. Maybe there is a switch deep in the machinery and very hard to
access that can be set so that the long-run average chocolate block size is
either 99.999 or 102.0. The current manufacturer knows that the switch is
there, though he is not yet able to check its setting, but he is 90 percent certain
that the previous owner would have favored the illegal 99.999 setting. The
manufacturer now also knows that the probability of a sample that averages at
least 102 given the setting 99.999 is 0.08. In symbols we write P(s102]av99999)
= 0.08. Using similar notation, we also know that P(s102[av102) = 0.5 (half
the time the sample average will be at least as heavy as the set machine aver-
age). Bayes’s theorem as discussed in Chapter 3, then gives us

P(sl O2[av99999) x P(av99999)
P(s102[av99999) x P(av99999) + P(s102|av102) x P(av102)

P(av99999|s102) =
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so that

0.08 x0.9
P(av99999|s102) = =0.59.
0.08x09+0.5x0.1

Therefore, the manufacturer after measuring the sample should revise his prior
belief that there was a 90 percent chance the machine is on the lower illegal
setting. He should now believe that there is a 59 percent chance that the ma-
chine is on the lower illegal setting.

On the other hand, say that somehow the manufacturer knew that there was a
90 percent chance that his machine was set to give an average block size of 98.6
and a 10 percent chance that it was set to give an average block size of 102.0.
Then, after obtaining the sample with average 102, the calculations can be re-
peated with P(s102[av986) = 0.025 in place of P(s102[av99999) = 0.08. The result
will be that the manufacturer, after measuring the sample, should now believe
there is a 31 percent chance that the machine is on the lower illegal setting. We
see that the same data with the same confidence interval but combined with
different prior ideas lead to different conclusions about probabilities.

In practice, the manufacturer’s ideas about the machine setting prior to
measuring the sample are usually going to be more complicated than a prob-
ability regarding a simple choice between the value 102.0 and one other value.
The possible machine setting will be a continuous variable and the manufac-
turers prior ideas about likely settings would be represented by probabilities
“smeared out” over a continuous range of values. Also note that the actual out-
come is known not to be *“102.0 or above,” but “exactly 102.0.” Taking all these
factors into account, calculations like those here become very complicated
and are the subject of Bayesian statistics. Even obtaining a reasonable math-
ematical representation of the manufacturer’s prior ideas is a major challenge.

In frequentist statistics all that can be calculated is confidence intervals. As
we have seen, it is not correct to think of the confidence interval as a probabil-
ity that the manufacturer’s p is in the given range. There is no answer to the
manufacturer’s question in frequentist statistics. He cannot use the data to give
him a probable range for p. Statistics only answers the reverse question about
how compatible the data are with various possible values of p. In practice,
though, he would be more confident that he was complying with the law if all
of the 95 percent confidence interval for p was above the legal value of 100.

END OPTIONAL

The single sample ¢ test and z test examples are a bit different from most of
our other tests in that they test an arbitrary hypothesis such as g = 170 rather
than a null hypothesis H,,. Let us now look at how confidence intervals apply
in situations where there is a null hypothesis. Consider the situation of two
groups of people where one group has an intervention and the other group
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does not, and assume that we are measuring some outcome that is a value
from a normal distribution. In the hypothesis testing approach we would look
at the difference in the averages for the two groups and assess the variability in
the system. Calculations would then allow us to answer the question, “Given
this much variability in the system, how often would chance alone result in
two group averages at least as different as these two group averages are?"” The
answer to this question is the p value and is the basis for our decision about
whether the intervention makes a difference. The confidence interval approach
instead works out that if the true long-run average difference as a result of the
intervention was any figure out of some range of values then we could have
easily obtained the average difference between the two groups that we have
observed.

What do we mean by “we could have easily obtained™? To explain, assume
that in place of the null hypothesis that there is no difference between the two
groups we have a d hypothesis that there is a difference of some value d be-
tween the two groups. With a slight modification of the hypothesis testing
calculations, we can test this d hypothesis. To test the d hypothesis, use the
rule that we reject the d hypothesis if the actual difference in group averages
are too far from the value d. By “too far” we mean that calculations show that
if the d hypothesis were true then chance alone would lead to a group average
difference at least as extreme as our observed difference less than 5 percent of
the time. Such calculations would lead us to reject the d hypothesis where d is
a long way from the observed average difference between the two groups, but
we would not reject the d hypothesis when we chose d to be a value close to
the observed difference in average between the two groups. There would be a
range of values of d where we would not reject the d hypothesis. This range of
values is the 95 percent confidence interval. If the true long-run average dif-
ference made by the intervention was any value in the 95 percent confidence
interval, we could easily get the observed difference between the group aver-
ages in the sense that these observed values are not so far out from d as to
make us think that we have convincing evidence against the value of d.

In place of a p value of 0.05 we could use any other p value as our rule for
rejecting our d hypothesis. If we used a p value of 0.10, we would obtain 90
percent confidence intervals. If we used a p value of «, we would obtain 100 x
(1 — ) percent confidence intervals.

Confidence intervals are a widely used extension to the analyses of paired
sample and independent samples ¢ tests. Recall that the paired sample f test is
used when we make measurements before and after an intervention or when
we treat one of a pair and not the other and compare measurements of out-
comes. In the paired sample 7 test, under the null hypothesis the differences x;
between the items in each pair are figures drawn from a normal distribution
centered on zero and with unknown standard deviation. This leads to the con-
clusion that
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x-0
s/
/n

is a figure from a ¢ distribution. With the confidence interval approach we
would have a d hypothesis that the difference between the items in each pair is
a figure drawn from a normal distribution centered on d. Then

X-d

s /\Z
would be a figure from a ¢ distribution. If the computer or statistical tables told
us that 95 percent of the time figures from the appropriate ¢ distribution are
between —7 and 7, then the 95 percent confidence interval for the difference d
is given by the inequalities

x-d

T<—<
s/\n

T

This can be rearranged to
F_oS8/ ST S
b3 T/\n<d<x+ﬂr /\n

Similarly, in the independent sample ¢ test the null hypothesis leads to the
result that the expression

the difference between the two means

will be a figure from an appropriate ¢ distribution. Say one mean is X and the
other is ¥, this expression can then be written as
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is a figure from a ¢ distribution. This then leads to a confidence interval of the

form
o ] 1 o 1 1
X=y-78, |[—+—<d<X-V+7T5s, |[—+—
m n moon

for the difference 4 made by the intervention. This rather messy expression is
saying that the confidence interval for d, the true average difference between
the groups, is within an amount

1 1
TS, [—+—
m n

of the observed average difference in our two samples, X — y. Different per-
centage confidence intervals are obtained by using different values for 7. Here
71s a figure from the appropriate ¢ distribution such that values between —7
and +7 occur the required percentage of the time. These calculations are gen-
erally made by computer. Note that if the 95 percent confidence interval in-
cludes zero difference, then by definition we would not reject the null hypothesis
that the difference is zero at the 5 percent significance level (i.e., p > 0.05).

For an example emphasizing the need to use common sense with interpreta-
tion of confidence intervals, consider the experiment mentioned in Chapter 1
on whether two half-hour music lessons per week are of more benefit than a
single half-hour music lesson per week. In Chapter | we said that the experi-
ment involved only small numbers and showed a surprisingly small 2 percent
improvement in those who had more lessons. We will assume that the percent-
age units refer to marks out of 100 on an exam and it is reasonable to believe
that these are approximately normally distributed (of course, values below 0%
and above 100% are impossible, so the assumption of a normal distribution is
at best approximate). We discussed how silly it would be to start with the null
hypothesis, as it 1s not reasonable to believe, in the absence of evidence, that
the extra tuition is of exactly zero benefit. If we looked at confidence intervals
in some computer analysis of the figures, it might tell us that the 95 percent
confidence interval for the amount of improvement was —18 to +22 percent.
This would be telling us that if the true difference made by the tuition was
anywhere between —18 and +22 percent we could “easily” get our figures. By
“easily” we mean that our figures would not contradict a d hypothesis with d
in this range when we used the benchmark p value of 0.05. The confidence
interval would be wide like this, if there were very little data and what data
there were indicated considerable variability. The confidence interval is sym-
metric around the observed mean of 2 percent improvement. This means that
an actual improvement of zero (the null hypothesis) could give the observed
figures just as easily as a long run improvement of 4 percent.

However, this does not mean that the null hypothesis that there is no im-
provement is just as likely as the hypothesis that there is a 4 percent improve-
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ment in marks of students who have an extra lesson each week. Common
sense tells us that an extra lesson will almost certainly be of some positive
value, not zero or negative value. The width of the confidence interval also
tells us indirectly that our experiment was not very powerful. Even if the long-
run improvement was as large as 22 percent, the confidence interval shows us
that we could still “easily” have obtained our data that show only a 2 percent
average improvement. If prior to the experiment I had been very uncertain
about how much improvement could have been expected from an extra half-
hour of tuition per week but I had guessed that it would probably make a
difference on average of somewhere between 10 and 40 percent, then after
seeing the confidence intervals given by the experiment I would reassess my
guess. I might perhaps now guess that the true average long-run improvement
from an extra half-hour per week of tuition would be a figure very likely to be
in the range from 5 to 25 percent. Note that if the long-run average improvement
was a figure bigger than 22 percent the confidence interval tells us it would be
unusual to obtain data like ours with only 2 percent average improvement. How-
ever, this does not rule out the possibility that the long-run average improvement is
more than 22 percent, and we must balance this against our feeling that 25 percent
(the average of 10% and 40%) was our best guess prior to the experiment. On the
other hand, I would continue to rule out the null hypothesis and negative val-
ues for the true long-run average improvement, even though the null hypoth-
esis can give rise to our figure of a 2 percent average improvement more easily
than a hypothesis that the true long-run average improvement is more than 5
percent. Common sense tells me that it is exceedingly unlikely that an extra
half-hour of tuition can have no effect or a negative effect on performance.

Readers may be very unhappy with the amount of guesswork here. How-
ever, guesswork is unavoidable in attempting to make estimates in the face of
limited and variable information. It is true that confidence intervals are based
solely on calculation and do not require guesswork, but avoiding guesswork
by stopping at a quote of the confidence intervals may not be a satisfactory
solution. For example, 95 percent confidence intervals are widely misunderstood
as being the range of numbers 95 percent certain to contain the true average value.
If the situation allows any common-sense guessing or there is any prior knowl-
edge, 95 percent confidence intervals cannot be thought of as being the range
of numbers 95 percent certain to contain the true average value. The common
sense and prior ideas have to be taken into account in deciding where the true
average value is likely to be. This is a point that deserves emphasis.

Those who resent the speculation used in this example are, however, cor-
rect in some respects. We arbitrarily condensed our common sense into the
guess that the extra tuition “probably” makes an average difference of some-
where between 10 and 40 percent. We then simply used another guess to com-
bine our prior guess of 10 to 40 percent with our calculated 95 percent
confidence interval of —18 to 22 percent to give our final guess of 5 to 25
percent as the range very likely to contain the unknown figure for true long-
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run average improvement. The proper method of assessing and combining the
prior information with the information in the data is to use Bayesian statistics.
Unfortunately, Bayesian statistics is more difficult and less amenable to automated
calculation. It was briefly discussed in the chocolate manufacturer example in
the optional material discussed earlier, but is not dealt with further here.

We can conclude by stating that confidence intervals are a useful extension
to hypothesis testing. They sidestep the problem that the null hypothesis is
almost certainly a fiction in most cases. In addition, statements about rejection
or nonrejection of the null hypothesis give us no clue as to the sort of differ-
ences the experiment had the power to show, whereas the width of confidence
intervals give us an idea of what sort of effects could be present and readily
compatible with the data. However, just as in the case of hypothesis testing,
confidence intervals must be interpreted with the assistance of common sense.

SUMMARY

« Hypothesis testing is objective, but it is not a logically satisfying approach to deci-
sion making.

+ Hypothesis testing implies conservatism: not believing effects are real until the evi-
dence is strong.

» Hypothesis testing will frequently fail to detect real differences when the differ-
ences are small, when numbers in the experiment are small, or when there is a lot of
variability.

» The results of hypothesis testing should always be regarded as tentative.

¢ Hypothesis testing should always be interpreted in light of common sense and should
take into account the chances of Type I and Type 1I errors and the costs of these
errors.

« Confidence intervals give us a range of possible values for the long-run average
difference caused by an intervention that are easily compatible with the data. They
do not directly tell us the chance that the average difference is in some range. If we
have no preconception about what difference is to be expected, the distinction be-
tween confidence intervals and probability intervals is not relevant. Otherwise, con-
fidence intervals have to be interpreted with common sense.

In short, confidence intervals are a more satisfactory approach than hypoth-
esis testing in decision making as they indicate the range of effects easily
compatible with the data. However, confidence intervals also have to be inter-
preted in the light of common sense.

QUESTIONS

1. It is suspected that watching violence on television may have an adverse impact
on human emotional development and social interaction. As part of a study on the
issue, a number of young children are shown a nonviolent cartoon on one occa-
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sion and a cartoon containing violence on another occasion. After each cartoon
viewing, each child was introduced to a group of children of similar age (who
watched neither cartoon) and their interaction with the group was studied. The
number of times in which it was judged that a child socialized more construc-
tively after the nonviolent cartoon than after the violent cartoon was assessed by
an assessor who had no knowledge of the type of cartoon that had been shown.

a. Whatis the null hypothesis in this experiment? Is the null hypothesis appro-
priate? What is the alternative hypothesis in this experiment? Is a one-tail or
two-tail test appropriate?

b. How plausible do you personally feel each of these hypotheses are?

¢. In making a decision between these hypotheses, what do you see as the
costs in making a Type I error? What do you see as the costs in making a
Type Il error?

d. What p value do you feel is appropriate to just make you change your mind
between the two hypotheses?

e. Say that the experiment was actually performed on twelve children with the
following results: Five children socialized equally well after both cartoons,
six children socialized better after the nonviolent cartoon than after the vio-
lent cartoon, and one child socialized better after the violent cartoon than
after the nonviolent cartoon. Perform an appropriate statistical test and find
the p value. Do you now believe in H, or H,?

2. Ineach of the following cases decide whether the hypothesis listed is appropriate
as a null hypothesis that could be tested by collecting appropriate data. If you
decide the hypothesis is not appropriate as a null hypothesis, state why not. If you
believe that the null hypothesis is appropriate, state how strongly attached you are
to the null hypothesis. How strongly attached you are to the null hypothesis should
be expressed in terms of the rarity of event that would make you reject the null
hypothesis. In other words, for certain moderate values of x you would not reject
the null hypothesis if an event occurs that has 1 chance in x of occuring when the
null hypothesis is true, even though the event is more likely to occur when the nuil
hypothesis is false. The question is how big would x have to be before it was just
enough to force you to change your mind and reject the null hypothesis. Give
brief reasons for your opinions.

a. A rubber strip hanging between a car bumper and the road surface has no
effect on motion sickness associated with car travel.

b. Short and tall people are equally good at basketball.

¢. Male and female students are equally good at statistics.

d. The astrology column in a weekly magazine does not predict peoples’ fu-
tures.

e. Vaccination against measles does not reduce your chance of catching measles.

f. Students learn just as well when lecture notes are written on a blackboard as
when they are presented in the form of transparencies displayed with over-
head projectors.

g. Motorcyclists and car drivers have equal chances of fatal road accidents.
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aa.
bb.

cc.
dd.
ec.

ff.
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hh.

. New drug A is no more effective than aspirin at relieving a headache.

Gastroenteritis is as likely to spread in households where all members al-
ways wash their hands after using the toilet as it is in households where this
is not the common practice.

Reticulated water is as good for plant growth as rainwater.

Small primary school classes have no educational advantage over large
classes.

Drivers of four-cylinder cars have the same rate of fatal car accidents as
drivers of six-cylinder cars.

There is no relationship between poverty and crime.

. People who are blind in one eye are as good at distance perception as people

who can see through both eyes.

Students from well-resourced government schools get as good an education
as students from comparable private schools.

Beer stored in wooden kegs tastes the same as beer stored in metal kegs.

Forest regenerating after logging has as many different species of wildlife
as old-growth forest.

Physically fit students have no academic advantage over unfit students.

. The taste of equivalent amounts of sugar and saccharine in foods is indistin-

guishable.
Blackboards and whiteboards are equally popular among students.
Intensive fishing does not reduce the number of fish in the sea.

People who are deaf in one ear are as good as people with normal hearing in
determining the direction of sound.

Brand A and brand B paints are equally long-lasting.

Numbers that have not appeared in the last 100 spins of the roulette wheel
are no more likely to occur on the next spin.

Dalmatian dogs do not learn tricks more readily than golden retrievers.
Smokers and nonsmokers are equally likely to die prematurely.
Men and women are equally likely to be victims of domestic violence.

Stutterers are just as likely as those with fluent speech to gain employment
in the public relations area.

Toothbrushing does not protect against tooth decay.
A medical history of heart attack does not affect longevity.

Sanitary disposal of sewage does not necessarilyreduce the incidence of
diarrheal disease.

Male and female cyclists are equally likely to have bike accidents requiring
hospitalization.

Marks on a statistics exam are not affected by additional tutoring.

Marks on a statistics exam are not affected by an exercise program.
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Marks on a statistics exam are not affected by a carrot juice diet.

Marks on a statistics exam are not affected by an ointment purchased from a
traveling fair and rubbed into the forehead once per day for two weeks.

Rich people and poor people are equally likely to steal food to eat.

Rich people and poor people are equally likely to have surnames starting
with the early letters of the alphabet.

People who use sunscreen regularly are just as likely as people who don’t
use sunscreen to suffer from skin cancer later in life.

Infants who display considerable enthusiasm for music are just as likely as
other infants to show ability in mathematics in later life.

Sagittarians have just average luck in terms of winning raffles.

Clairvoyants who are consulted by strangers are not able to guess the birth
dates of the strangers any more often than would be expected by chance.
Consumption of fatty foods is not related to the later onset of rheumatoid
arthritis.

Possession of a beard is in men is not related to the later onset of rheumatoid
arthritis.

The day of the week on which you are born is not related to the later onset of
rheumatoid arthritis.

Family history of rheumatoid arthritis is not related to the later onset of
rheumatoid arthritis.

Potted plants exposed to the music of the Beatles grow just as well as potted
plants exposed to the music of the Rolling Stones.

A twenty-minute session of vigorous physical exercise in the late afternoon
does not lead to improvement in sleep for people suffering from insomnia.

3. Consider each of the following null hypotheses and decide whether in testing each
of these hypotheses you would use a one-tail test or a two-tail test. In each case
give brief reasons for your choice.

a.

[¢]

Students who are provided with a private tutor visiting their home are as
likely to get good results as students who are not provided with this service.

High school students whose main outside interest is sports are as likely to
do well at school as students whose main outside interest is computer games.
Plants that are watered three times a week grow just as rapidly as plants that
are watered daily.

Patients having major surgical procedures fare equally well regardless of
whether the surgery is performed by general practitioner surgeons or fully
trained specialist surgeons.

. Cyclists wearing white clothes are just as likely to be hit by a car at night as

cyclists wearing clothes of other colors.

People with blood group A are just as likely as people with blood group B to
contract rheumatoid arthritis.
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Blue-eyed and brown-eyed people are equally likely to suffer from rheuma-
toid arthritis.

Scuba divers who have been given a six-week training course are just as
likely to have accidents as scuba divers who have been given a twelve-week
training course.

. Laboratory rats provided with unlimited quantities of wheat grain grow just

as fast as rats provided with a variety of dinner table scraps in addition to
unlimited quantities of wheat grain.

People whose surname starts with “A’ are just as introverted as people whose
surname starts with “Z.”

Diabetics who have a weekly medical check suffer diabetic complications
at the same rate as diabetics who have monthly medical checks.

4. A sample of chocolate bars from a factory are weighed and the results are 201.3,
201.7,202.0,202.4,202.8, and 203.0 grams. Find

a.

the 90 percent confidence interval for the population mean of the weight of
a chocolate bar.

the 95 percent confidence interval for the population mean of the weight of
a chocolate bar.

. the 99 percent confidence interval for the population mean of the weight of

a chocolate bar.

Is it unreasonable to believe, given these data, that the population mean of
the weight of a chocolate bar is 200 grams?



CHAPTER 7

Causality: Interventions and
Observational Studies

Up until now we have often referred to interventions. We have often talked
about comparing two groups. One has been a comparison or control group.
The other group has been subjected to some intervention. In the first example
in this book the intervention was an additional half-hour of music tuition per
week, but we could imagine an endless variety of interventions that we might
want to test in various circumstances. In such cases, provided the subjects for
both groups are chosen at random from the same population, there can be only
two explanations for any differences between the two groups: chance and the
effects of the intervention. Because there is variability, the response of the
subjects selected for the control group may just by coincidence be different
enough from the subjects selected for the intervention group to make the aver-
age of measurements of the two groups appreciably different from each other
even though the intervention itself was entirely useless. On the other hand, the
average of measurements of the two groups would be likely to be different if
the intervention has a real effect. If we denote the intervention by the symbol
A and the difference by the symbol B, then we can summarize these two
possible explanations as

¢ chance

+ A implies B (in symbols we write A = B).

Often, however, the comparisons that we want to make are between two
groups that are different by nature. For example, we might want to compare
measurements of the lung function of drinkers and nondrinkers of alcohol.
The difference between the two groups here is in whether the individuals drink.
In a sense, this is the intervention. However, we did not create this interven-
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tion. We just observe its effect, so this is called an observational study. An
intervention is often not ethical or feasible. Clearly we could not collect a
large number of people who didn’t care either way about whether they took up
drinking, tell half of them to start drinking and the other half not to, and then
later measure their lung function. Instead, we choose two groups of people
who have made the different decisions for themselves about drinking. The
two groups may then be consistently different from each other in more than
just their drinking habits. In that sense, the two groups do not come from the
same population. This has important implications for causality. Say we find
poorer average lung function measurements in the drinkers compared to the
nondrinkers. There are now four possible explanations:

* chance.
* drinking (A) causes poorer lung function (B).
* poorer lung function (B) causes drinking (A).

+ some third factor (C) causes poorer lung function (B) and separately causes people
to drink (A).

In symbols, the four possible explanations are

 chance.
« A=B
« B=A.
» C = both A and B.

The last possibility, where some third factor causes poorer lung function
and separately causes people to drink, requires more explanation. Perhaps a
smoking habit tends to induce people to go to bars more frequently to pur-
chase cigarettes. Consequently, these people then tend to become drinkers.
The smoking also directly affects their lung function. Hence, even though
drinking may do nothing to cause lung damage directly, drinking and lung
damage will be associated because smoking has tended to cause both drinking
and lung damage. There is a more realistic but less direct version of this sce-
nario that will give a similar result. Certain social and personality factors re-
sult in some people being more concerned with immediate gratification than
with long-term consequences. Many such people will tend to become both
smokers and drinkers, so smoking and drinking are associated. We would again
have an association between poorer lung function and alcohol because of the
third factor, smoking.

It should be noted that we have used the word “intervention” without com-
ment when we have been dealing with observational studies in a few of the
previous examples. The statistical analysis is the same regardless of whether
the intervention is one we create in an experiment or one we observe. How-
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ever, in an observational study, when we decide that the differences between
two groups are too big to reasonably be put down to chance we have to con-
sider the options B = A or C = both A and B, as well as the most obvious
possibility that A = B. Common sense, not statistics, can help sort out these
options.

Often we can rule out one of A = B or B = A by looking at which came
first in time. Reasonable people believe that smoking is a cause of lung can-
cer. The smoking habit usually precedes the lung cancer by many years. A few
diehard smokers have argued that an intuitive knowledge that one is doomed
to lung cancer induces people to take up smoking, a habit that they argue
protects the lungs from cancer. They continue their argument by stating that
although smoking is protective to some extent, it is only partly successful in
preventing the otherwise inevitable lung cancer: hence the association between
smoking and lung cancer. There are at least three findings that do not fit this
explanation: Dogs attached to smoking machines develop lung cancer, there
are known cancer-causing chemicals in cigarette smoke, and there is a propor-
tionality between lung cancer incidence and prevalence of smoking in popula-
tions in various parts of the world and at various times. However, even if a
person knew nothing about any of these findings, the arguments of the diehard
smokers would still seem far-fetched. The argument seems far-fetched be-
cause what is to happen in the future, the lung cancer, must affect the decision
on whether to take up smoking in the past. This then requires the invention of
a possible mechanism to explain how this time reversal could happen. Rather
than invent such mechanisms, it will generally be more satisfactory to simply
concede that A and B are associated for reasons other than B = A.

It is also relevant to note that the word “cause” is a loose word that has the
precise meaning of either “contributory cause” or “absolute cause.” Smoking
is a contributory cause of lung cancer. Not everyone who smokes gets lung
cancer, but smoking increases the chance that a person will get lung cancer.
There are other factors involved in lung cancer, such as exposure to asbestos,
radioactive particles, industrial pollution, aging, and unknown factors that can
be lumped together as “bad luck.” On the other hand, destroying a forest is an
absolute cause of the death of animals in the forest, assuming it is known that
these animals are totally unable to survive without the habitat provided by the
forest. A person who objects to the bland statement that “smoking causes lung
cancer” on the grounds that not everyone who smokes automatically gets lung
cancer is interpreting “cause” as “absolute cause,” whereas most people would
gather from the context that “contributory cause” is meant. In statistics we are
generally interested in contributory causes. Absolute causes usually cannot be
confused with chance effects; therefore it is not necessary to use statistics to
assess them.

The problem of eliminating the possibility that C => both A and B is much
more difficult. For example, it is known from observational studies that older
women who take hormone replacement therapy (HRT) have fewer heart attacks
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than women who don’t. However, at the time of writing there is considerable
controversy between those who conclude that A = B (i.e., HRT causes a decrease
in heart attacks) and those who argue C = both A and B. Those who argue C =
both A and B believe some other factor causes some women to take HRT and
separately causes a decrease in heart attacks. The other factor could well be
attention to health. Women who are focused on their health are more likely to
attend doctors for the distress caused by menopausal symptoms and will then
receive HRT, and are also more likely to avoid heart attacks by living a generally
healthier life. It is necessary to await studies in which women are assigned at
random to a HRT group and a non-HRT group instead of allowing women to self-
select into these groups in order to be certain about causality here.!

DOUBLE BLIND PLACEBO-CONTROLLED TRIALS

In the medical setting, to decide between the options of A = B, or C =
both A and B experiments are preferable to observational studies where pa-
tients self-select. In an experiment, unlike a study where patients self-select
their treatment, there should be no difference between patients assigned to
various treatments other than that due to random chance. However, further
care is often needed before an experiment on humans can properly assess the
benefit of any new treatment. The ideal form for such experiments is known as
a double blind placebo-controlled clinical trial. A placebo is a dummy treat-
ment. If patients in a study are aware that they are getting a new treatment that
may turn out to be more effective than basic care, the power of positive think-
ing may affect the results. The power of positive thinking is often enough to
give those who think that they have received the new treatment a better out-
come than those who think they have received no treatment. Positive thinking
is known to have some effectiveness in a wide range of medical conditions,
from perception of pain and depression to skin rashes and warts. To ensure
that the power of positive thinking works equally for people in both groups, a
placebo is given to one group and both groups are kept ignorant of whether
they are receiving the new treatment or the placebo. So powerful and conta-
gious is the power of positive thinking that it is necessary to prevent the doctor
administering the treatments from knowing which is the new treatment and
which is the dummy treatment or placebo.

Since both patient and doctor are blind to the nature of the treatment, we have
the name “double blind placebo-controlled trial.” The term “controlled” here
implies the existence of a comparison group. Double blind placebo-controlled
trials are easy to arrange if the treatment consists of a drug that can be taken as
a tasteless coated tablet and has no immediate side effects that would make it
clear to the patient that they were receiving active treatment. The placebo can
then be a similar tasteless coated tablet containing only sugar. A double blind
placebo-controlled trial with such sugar tablets would be used for the assess-
ment of a new headache tablet, for example. However, double blind placebo-
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controlled trials may be difficult or impossible in the case of treatments such
as acupuncture or surgery. A double blind placebo-controlled trial in the case
of surgery would need to involve a surgeon not in communication with the
patient or the experimenter. That surgeon would then make a cut through the
anaesthetized patient’s skin but not perform the internal surgery. Such studies
have actually been done, but there are obvious ethical difficulties: The placebo is
not harmless like a sugar pill; it involves an anaesthetic and an incision. Double
blind placebo-controlled surgery is a rarity. Instead, the placebo effect is usu-
ally ignored in the case of surgery and experiments of new surgical approaches
consist of “trials” in which one group receives the new surgery and the other
group, the “controls,” receives the old standard care.

PROSPECTIVE AND RETROSPECTIVE STUDIES

There are many situations other than surgery in which double blind placebo-
controlled trials are not possible. Often we want to assess the effect of differ-
ences in lifestyles where patients have self-selected into two major groups.
Usually it will not be feasible for the experimenter to impose these differences
on two groups chosen from a single population. For example, it is not feasible
to use a controlled trial to assess the effects on health of lifetime dietary pref-
erences. In such situations we must use observational studies. There are two
major sorts of observational study in the medical context: prospective studies
and retrospective studies.

In a prospective study, people who have self-selected into two groups are
followed over a period of time to see if they develop a particular condition.
For example, smokers and nonsmokers have been followed over a long time
to study the incidence of lung cancer in both groups. In such a prospective
study we know for certain that the smoking precedes the lung cancer. so if we
find that there is an association between smoking and cancer that is too strong
to be reasonably put down to coincidence we can virtually eliminate the pos-
sibility that lung cancer causes smoking because the smoking came first. How-
ever, other information (such as knowing that smoke contains cancer-causing
chemicals) is needed to eliminate the possibility that C = both A and B and
so conclude that A = B (i.e., smoking causes lung cancer). Prospective stud-
ies are expensive, particularly for less common diseases, for they involve fol-
lowing a large number of people for a long time until sufficient numbers of
cases of the disease develop.

In a retrospective study. those who already have contracted a disease are
asked about their previous exposure to a possible risk factor and their answers
are compared to answers from a control group who don’t have the disease.
Although retrospective studies are cheaper than prospective studies, there are
more pitfalls. We can no longer ignore the possibility that any association is
due to B= A. Those who are victims of a disease may be more likely to recall
exposure to possible risk factors, so by selective recall the disease can in effect
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cause the preceding risk factor. In addition, there are major problems in se-
lecting the control group for comparison. In the case of lung cancer and smok-
ing, if a control group was selected at random from the total population the
most striking difterence between the two groups would probably be age. The
average age of a sample from the total population is likely to be in the twen-
ties, whereas the average age of lung cancer cases is likely to be several de-
cades older. This difference in age would not be telling us anything we did not
know before, but on the other hand, the difference in age could account for
many differences between the two groups that had nothing to do with the real
risk factors for lung cancer. To overcome this problem, some matching by age
and perhaps other factors is necessary. In other words, the control group should
be selected so that they are similar in age and perhaps similar in some other
ways to the lung cancer group. However, overmatching is then a problem. If a
study matched lung cancer sufferers and non-lung cancer sufferers according
to smoking habit, the study would have excluded the possibility of assessing
the most important risk factor for lung cancer: smoking.

There is a further problem. In practice, control groups are likely to consist
of people who have the time and generosity to cooperate with a medical study
even though they will not benefit personally. They are therefore likely to have,
on average, different personalities from the general population and from suf-
ferers. Differences in exposure to various factors between the control group
and the sufferers may therefore reflect the differences in personality and not
be due to the factors being risk factors for the disease. Ideally, the control
group should be chosen so that if one of the sufferers had somehow not caught
the disease that person would have the same chance of being included in the
control group as others in the population from which the control group is
selected. This is a difficult criterion to specify or even understand properly. It
is almost impossible to put into practice. Hence, retrospective studies are less
reliable than prospective studies.

SUMMARY

* In an experimental study two groups of individuals are chosen from the same popu-
lation. One group is subjected to an intervention and the other group is kept as a
control group for comparison.

* In an experimental study there are only two possible explanations for differences
between the two groups: chance or the effect of the intervention (chance or A=>B).

» In medical studies it is desirable to distinguish between the effect of an intervention
that is due to the power of positive thinking and the underlying physiological effect
of the intervention. This is achieved by an experimental format known as the double
blind placebo-controlled clinical trial, where neither experimenter nor patient are
aware of who is getting the active treatment and who is getting the dummy.

« In an observational study people self-select into two groups, with one group ex-
posed to some factor of interest and the other group not exposed. The two groups
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will generally be different from each other in other ways as well. In an observa-
tional study there are four possible explanations for differences between the two
groups: chance, A = B, B = A, or C => both A and B.

¢ Observational studies are of two main types. Prospective studies are more expensive

but are more reliable in establishing the direction of causality. Retrospective studies
are cheaper but are less reliable.

QUESTIONS

. Think of an example where all three possible directions of causality—A = B,

B = A, and C = both A and B—are likely to be operating simultaneously.

. A retrospective study is set up to examine the risk factors for suffering a broken

right leg, A control group is obtained that consists of those who have suffered a
broken left leg. Would this study reveal that motor bike accidents are the main
cause of suffering a broken right leg?

. A prospective study of heart attacks in a certain city enrolled 250 randomly se-
lected men aged fifty to fifty-five with no history of heart trouble. In other words,
these men were identified as living in the city in which the study was carried out
and a check was made that they fell into the required age group and had not had
heart trouble. It was noted that 200 of the 250 men frequently attended football
matches as part of their Saturday entertainment, whereas the 50 remaining men
preferred classical music concerts for Saturday entertainment and rarely attended
football matches. After ten years it was found that forty of the football goers had
suffered heart attacks, whereas only three of the concert goers had suffered heart
attacks. Fisher’s exact test (two-tail) performed on these data show that p = 0.020.
Do you believe that this study provides reasonably convincing evidence that men
who prefer classical music to football are less likely to suffer heart attacks? Do
you believe that this study provides reasonably convincing evidence that attend-
ing football matches tends to increase a man’s chance of having a heart attack?
Discuss.

. A sample of 2,000 people had their serum cholestero!l level measured and were
then followed up for five years. At the end of the five years it was found that 20 of
the 2,000 had met a violent death. Seventeen of the twenty were those who had a
below median level of cholesterol. Discuss the p value you would use to make a
decision between the hypotheses here. Perform an appropriate statistical test. Do
you believe that a low cholesterol predisposes people to violent death? Would
your decision be changed if you were told that 200 of the original 2,000 had died
of a range of causes and statistical tests looking for an association on each cause
of death had been performed separately? Would your decision be changed if you
were told that the study had been conducted over thirty years rather than five
years and that by the time the results were analyzed, in addition to the 20 who had
died violent deaths, 1,800 had died of other causes?

A retrospective study is set up to examine the risk factors for parenting a mentally
retarded child. The parents of all children with mental retardation in a given re-
gion all agree to cooperate in answering an extensive questionaire covering a
large range of factors that could possibly be relevant to mental retardation. Neigh-
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bors of the families with retarded children are given the same questionaire. If the
nearest neighbor is not prepared to cooperate and/or has no children, the
questionaire is given to the nearest neighbor who will cooperate and has children.
Would this study be capable of detecting the following possible causes of mental
retardation?

a. Mother suffering from rubella (German measles) in pregnancy.
b. Parents having many children.

c. Age of parents.

d. Mother suffering from poverty and malnutrition.

e. Residence near a lead smelter.

NOTE

1. As this book goes to press, the result of the HERS randomized controlled trial
on HRT has just been released. Surprisingly, it shows that the indidence of heart at-
tacks in women on HRT is greater than the indidence in women not on HRT. If this
finding is “for real” and not the result of chance, it tells us that a real but small negative
effect of HRT on health was so overwhelmend by the tendency discussed here, where
“C == both A and B,” that doctors had gained the opposite impression from observa-
tional studies.



CHAPTER 8§

Categorical Measurements on
Two or More Groups

The very first statistical test discussed in this book was Fisher’s exact test.
This test applies when we have two groups and we can categorize the out-
comes In these two groups in two ways. For example, the groups could be
“fired workers” and “not fired workers” and the categorization could be “fe-
male” and “male.” Since this was our first test, we did not have the back-
ground to fully explain a number of features of this test. We will do so now
before studying other tests where the outcome is a category rather than a nu-
merical measurement.

MORE ON FISHER’S EXACT TEST

We first note that a table displaying the results is called a 2 x 2 contingency
table (the 2s here refer to the fact that—excluding the headings and totals—
there are two rows and two columns. The table contains 2 x 2 =4 “boxes” of
data). We also note that the data can be viewed in two equivalent ways. In our
first example, the groups were “fired” and “not fired” and the categories were
“female” and “male,” but the groupings and categorization can be swapped around.
The two groups could be “female” and “male” and the categories could be
“fired” and “not fired.” There is a symmetry here. Most methods of analyzing
data are not affected by swapping the definition of groups and categories.

In Chapter 3 we explained how the contingency table on page 176 led to the
p value calculation

4 3 2 |
p=—x-—x— x—= (.008 < 0.05.
9 8 7 6
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This calculation was based on the reasoning that with nine people, four of
them men, we had a 4/9 chance of obtaining a man for our first butter preferrer.
Then, with three men and eight people remaining, we had a 3/8 chance of
obtaining a man for our second butter preferrer, and so on. We did not deal
with contingency tables where there are all non-zero entries in the table. The
calculations then become complicated, involving more extensive use of the
theory of combinations (see Chapter 3).

Male Female Totals
Prefer butter 4 0 4
Prefer marg 0 5 5
Totals 4 5 9

For those who want it, the theory is given here, though it is not essential for
our purposes to go through the details. While the theory is not essential, the
discussion afterward is necessary for a proper understanding of the p value
when the 2 x 2 contingency table doesn’t have zeros on the diagonal.

OPTIONAL

For those who are interested in the theory, given the accompanying table we
reason that there are «***<*4C__ ways of choosing a + ¢ people out of the
total of a + b + ¢ + d people to be in Category A.

Group I Group 11 Totals
Category A a c atc
Category B b d b+d
Totals ath ctd a+b+c+d

The number of ways of choosing a Group I people to be in Category A and ¢
Group II people to be in Category Ais“*"C, x*“C . We compare this number
of ways of obtaining a in the top left box of the 2 x 2 contingency table and ¢
in the top right box of the table with the “*”*<~“C__ ways of obtaining the
total a + ¢ for the sum of the top two boxes in the table. The probability that
the a + ¢ in Category A will be made up of this particular choice from the two
groups is then

a+ IwC” x ¢t L/C(

a+h o+ +z/C
o+ ¢
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With the totals fixed, once we have fixed the number « in the top left box of
the 2 x 2 contingency table the nhumbers in the remaining three boxes are fixed
also. The expression

o+ IvC“ X €F ‘[C‘.

a+b+ct dC“ ..
is therefore the probability of this particular allocation of data to the four boxes
of the 2 x 2 contingency table when the totals are as specified.

Those who have made the effort to have understood the logic in the previ-
ous paragraph will now be disappointed to learn that there is a subtle philo-
sophical objection to Fisher’s exact test. The question that is usually most
appropriate is, “What is the chance of getting a Group [ people in Category A
and ¢ Group II people in Category A given that the chance of a person of
either group being in Category A is unknown?” whereas the question that we
have answered with the Fisher’s exact test calculation is, “What is the chance
of getting a Group I people in Category A and ¢ Group II people in Category
A given that a + ¢ people out of the entire sample are in Category A?” For
either question we want an answer based on the null hypothesis assumption
that there is no preference for those in a particular group to tend toward a
particular category. The latter question, which we have answered exactly, would
be completely appropriate only if we had selected a + b Group I people and ¢
+ d Group II people, all of whom were initially in just one of the categories.
We then waited for a disease or some other process over time to change people’s
categories until we knew that there were exactly ¢ + ¢ people out of the entire
sample in Category A. Usually, though, we do not predetermine the total num-
bers in the categories and so the question that we have answered is not quite
the appropriate question. We cannot obtain an exact answer to the more ap-
propriate question, “What is the chance of getting @ Group | people in Cat-
egory A and ¢ Group Il people in Category A given that the chance of a person
being in Category A is unknown (but not affected by which group the person
is 1n)7” An exact answer 1s unobtainable because it is based on the unknown
chance that someone will be in category A, and we cannot do calculations
when the underlying chance for an individual is unknown. However, when
numbers are large the proportion in the two groups combined that we actually
see in a category is a good guide to the underlying chance of an individual of
either group being in a category. Some rather difficult theory based partly on
this idea allows an approximate answer to the more appropriate question when
numbers are large. The approximate answer is in the form of a statistical test
called the chi-square test, which is discussed later in this chapter.

END OPTIONAL

We now return to the issue of what the p value actually measures when we are
dealing with a 2 x 2 contingency table that doesn’t have zeros on the diagonal.



178 Statistics with Common Sense

Say that we suspected that there might be a tendency for females to have
different butter—margarine preferences compared to men, and instead of the
results in the first table of the chapter we obtained the accompanying results.

Male Female Totals
Prefer butter 5 2 7
Prefer marg 1 5 6
Totals 6 7 13

We will assume that the null hypothesis is reasonable here. In other words, in
the absence of data we are happy to take as our starting point that there are no
gender differences between men and women in terms of butter—-margarine pref-
erences. We want to ask the primary question, “Given the results in the ac-
companying table, how likely is it that there is a gender difference between
men and women in terms of butter-margarine preferences?” As always, statis-
tics doesn’t directly answer this question but instead answers a secondary ques-
tion. This secondary question is something like, “If there was no gender
difference in butter—margarine preferences, how often would pure coincidence
lead to the results here that make it look like there is a gender difference in
butter—margarine preferences?”

However, the secondary question is actually one step more complicated
than this. As explained later (and previously on pages 67 and 68), it is neces-
sary to not just ask about how likely our particular results are under H,,. In-
stead, we need to ask about the combined likelihood of all the outcomes that
are at least as extreme in favor of H, as our particular result. In doing so, we
are thinking that there are a range of possible outcomes that would be most
likely if H, were correct, and outcomes in this range commonly occur. We are
content to continue to believe in H, if we get one of these results. Outcomes
outside this range “hardly ever” occur and make us reject H,. We define “com-
monly” occur and “hardly ever” occur by a benchmark p value that we will
denote p,. Outcomes that occur “commonly” are part of a range of outcomes
that occur | — p, of the time, whereas the remaining outcomes that occur “hardly
ever” are part of a range that occurs p, of the time. When we get a particular
outcome from an experiment, we ask what the combined probability is of all
the outcomes that are at least as extreme as this outcome: The answer will tell
us whether we are dealing with the sort of outcome that occurs “commonly”
or “hardly ever,” assuming H, is true. In the context of Fisher’s exact test,
recall that under H, we are assuming that it is a given fact that we have se-
lected a certain number of men and women and a certain number of butter
preferrers and margarine preferrers and that chance then allocates the num-
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bers in the various categories. Overall, about half of the people prefer butter
and about halt are women, so if H, were true overall we would expect about
half the women and half the men to be butter preferrers. We would therefore
expect about three men and three women to be butter preferrers, but we see
that we have fewer women and more men than we would expect. The set of
outcomes that are at least as extreme as those we have obtained are, the out-
come we have actually obtained and all possible outcomes with even fewer
women and even more men in the butter-preferrer category. In working out
what these outcomes are, we must remember that we are taking it as a given
that we have selected six men, seven women, seven butter preferrers, and six
margarine preferrers, and that the allocation of the men and women into the
butter or margarine category has occurred purely by chance. The table giving
a more extreme possible outcome is given here.

Male Female Totals
Prefer butter 6 1 7
Prefer marg 0 6 6
Totals 6 7 13

More extreme outcomes than this are not possible, as we are assuming the
numbers in the categories are fixed and we have used up all our males in the
butter-preferrer category. Calculation shows that the probability of the out-
come given in the table on page 178 is '*/1 716. This calculation can be done by
those who go to the effort of reading and understanding the optional section
on theory, but it is sufficient to accept that the calculation can be done. The
probability of the outcome given in the table on this page is 7/1.716. Overall, the
combined probability of an outcome at least as extreme as ours in favor of
women preferring margarine is then '*/, 716+ /1 716 or '*¥/, 716. This is then our p
value. However, there is a further complication here. This is the p value for a
one-tail test. It is the p value if H, was as it was before, but H, was that women
tended to be margarine preferrers. These hypotheses would be valid if we
believed that a reasonable starting point was that there was no gender distinc-
tion in these preferences, but that if this was in fact incorrect it would have to
be in favor of women preferring margarine. Such an H, might be appropriate
if we believed that the only possible connection between gender and butter
preferences was that women are associated with nurturing and are therefore
perhaps more health conscious and hence into healthier, lower-cholesterol food.

If, however, our H, was simply that there could be gender differences in
either direction, then our p value would have to take into account the prob-
abilities of all the outcomes at least as extreme as the outcome obtained, in-
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cluding outcomes where instead of too few there are too many females (and
hence too few males) in the butter-preferrer category compared to the num-
bers we expect from the fact that about half of all the people are butter preferrers.
Calculation shows that the outcome with two male and five female butter
preferrers out of six men and seven women occurs more commonly than the
outcome we actually obtained of five male and two female butter preferrers.
We therefore don’t count the probability of the outcome with two male and
five female butter preferrers: It is not as extreme a result as the one we actually
obtained. However, the outcome with one male and six female butter preferrers
is a less common outcome than the outcome we actually obtained, as is the
even more extreme zero male and seven female butter preferrers. Calculation
shows that these latter two outcomes have probabilities under H,, of “*/, 716 and
'/1716. The two-tail p value is then the sum of all the probabilities of all indi-
vidual outcomes at least as way out and unlikely as our actual outcome of five
male and two female butter preferrers out of six men and seven women. It is
therefore "%/,716 + **/1716 + '/1.716 or /1 716. In practice, it is not necessary to
calculate all these individual probabilities: A computer program does all the
work automatically.

However, leaving everything to the computer can lead to mistakes. There
can be problems to do with computer calculation of the p value for one-tail
tests. You can be stung by the tail. so to speak. Consider the following ex-
ample from real life where an experiment or “clinical trial” was carried out to
assess the value of antibiotics in preventing infection after a certain surgical
procedure. The results were that eight out of fifty-three people who received
antibiotics got infections and three out of fifty-seven who did not receive anti-
biotics got infections. The computer analysis of this clinical trial gave a one-
tail p value of 0.080 and a two-tail p value of 0.115. Since antibiotics are
known to be effective against many infections, we might not want to strongly
hold on to the idea H, that they are of no benefit. We therefore might set our
benchmark p value here above the traditional 0.05. We also note that a one-tail
test seems appropriate here. If antibiotics make a difference. it would be ex-
pected to be a positive difference. Therefore, at first sight the result 0.080 for
the one-tail p value might make us think that we have reasonably convincing
evidence that antibiotics are effective in this situation. However, in doing this
calculation the computer automatically assumes that the appropriate p value is
less than half. In particular, the computer is working out the combined prob-
ability under H, that with a total of eleven people getting infections it would
be three or fewer of the nonantibiotic people who got infections. This is, of
course, an answer to the wrong question. Our H, is that if antibiotics do any-
thing they will be of benefit in preventing infection. The computer is implic-
itly responding to the H, that if freedom from antibiotics does anything it will
be of benefit in preventing infection. Our question instead should be, “How
often would chance alone lead us to getting as few infections as we actually
did or even fewer infections in the antibiotic group compared to the nonantibi-
otic group?” Since we actually got more infections in the antibiotic group
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despite the fact that this group was a bit smaller than the nonantibiotic group,
our answer to this question should be more than half the time. Put another
way, we see that about 10 percent of the patients get an infection, but infection
happens to about 15 percent in the antibiotic group and about 5 percent in the
nonantibiotic group. Even if antibiotics were entirely useless, we should usu-
ally get results that look much better than these results. Calculation shows that
98.1 percent of the time, if antibiotics were entirely useless, we would get a result
that looked as favorable or more favorable for antibiotics than our result. Our p
value should therefore be 0.981, not 0.080. There is certainly no evidence in
this result in favor of antibiotics, but if we entirely ignored common sense, did
not bother to look at our figures, and simply looked at the p value, we might
think that the experiment had come close to the “magical” 5 percent statistical
significance value “proving” that antibiotics are worthwhile.

THE CHI-SQUARE TEST OF ASSOCIATION

The calculations involved in Fisher’s exact test are difficult even for a com-
puter when dealing with numbers greater than a few hundred. For this reason,
and also because of the subtle philosophical objection discussed in the earlier
optional section, an approximate test was developed. The test is called the chi-
square test of association or simply the chi-square test (also written as the x*
test). The test has the advantage of applying not just to 2 x 2 contingency
tables, but also to situations where there are more than two groups and/or
categories. There is no widely used equivalent to Fisher’s exact test in such
situations. This use of the x” test is dealt with later.

The detailed theory underlying the x? test is complicated, but the actual
calculations are simple. To explain the calculations, assume that one-third of
all people surveyed are women and one-quarter of all people surveyed are
butter preferrers. Our null hypothesis is that there is no gender effect on but-
ter—margarine preferences. In that case, we would ideally expect that one-
quarter of the women would be butter preferrers. Since one-third of all people
in the sample are women, this would mean that a quarter of this third of the
total or one-twelfth of the total should ideally be in the box “female and butter
preferrer.” This is just an ideal. Even if the null hypothesis is correct, chance
alone will often mean that the number will not be exactly one-twelfth of the
total. Indeed, if the total was not a number divisible by twelve we couldn’t
possibly achieve this ideal. Regardless of this, we call this ideal number the
expected value and we denote it by E. The actual observed number we denote
by O. We then calculate the quantity

(0~ Ey
E

We can repeat this calculation until we have dealt with all four entries in the 2
x 2 contingency table (male and butter preferrer, female and butter preferrer,
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male and margarine preferrer, female and margarine preferrer). We then add
together all four quantities

(O-Ey
E

There is theory that tells us that if H, is correct, the value we have obtained is
approximately a value from a probability distribution known as a x?, distribu-
tion (pronounced “chi-squared distribution with 1 degree of freedom”™). If the
observed values are suspiciously far from the expected values (remembering
that we expect O to be close to E under H,), then (O — E)? will be large and we
will get a suspiciously large number from a x?, distribution. More precisely, if
the sum of the values

(O-Ey
E

for all four boxes is x, then the p value 1s approximately the chance of obtain-
ing the value x or larger from a x?* distribution. In other words, if H, were
correct, | — p of the time our Os would be a closer match to our Es than we
have found in our case. If p is tiny, so that 1 — p means “nearly always,” we
could say that if H, were true we would “nearly always” get our Os matching
our Es better than we have. This would suggest that H, is not true, though, as
always, we would have to judge the appropriate benchmark p value in light of
common sense. It should also be noted that the theory on which the test is
based is only approximate and the approximation is regarded as inadequate
when the expected number in any box is less than 5. When numbers are large,
the x? test and Fisher’s exact test give similar p vatues. The p values obtained
from a x* test are those for a two-tai! test and need to be halved if a one-tail test
is appropriate. Note again the caution givenon pages 180 and 181 and in the
section on one-tail and two-tail tests on pages 75 and 76 regarding p values for
one-tail tests when the data point in an unexpected direction.

For example, let us apply the x~ test to our gender butter—-margarine prefer-
ence example from page 178. Since /15 of the sample are butter preferrers and
%/1; are male, we ideally would expect /13 of %13 of the total of thirteen people
to be male butter preferrers. This is about 3.23 people (more briefly, the for-
mula for expected value is

row total x column total

overall total

Similarly, we would expect 3.77 to be female, and among the margarine
preferrers there would be 2.77 males and 3.23 females (note that once we have
calculated one of the expected values, we can get all the other expected values
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using the fact that the expected values have the same group and category totals
as the observed values). We then calculate

(3.23-5¥ (3.77-2¢ (77-1 (3.23-5)
+ + =

+ 3.90
3.23 3.77 2.77 3.23

The computer or a table of x?, values shows that numbers at least this large from a
x°, distribution occur a little less often than 5 percent of the time (p =0.0484). We
could then say, “We have evidence that is statistically significant at the 5 percent
level that there is a gender difference in butter—margarine preferences.” We can
compare this result with our two-tail p value of '"%716 or 0.103 obtained from
Fisher’s exact test. Unfortunately, though, our x? test calculations are not valid
because some (in fact all) of our expected values are less than 5. The approxi-
mations underlying the x* test make it unreliable with these small numbers.
We should therefore use the p value obtained from Fisher’s exact test.

ODDS RATIO AND RELATIVE RISK

Fisher’s exact test and the chi-square test of association test the null hypoth-
esis that there is no relationship between which group a person is in and which
category that person belongs to. If we decide to reject this null hypothesis, it is
desirable to have some measure of the strength of the association between
being in a particular group and having a particular category. There are two
such measures: the odds ratio and the relative risk. The p value is also an
indicator of the strength of the association, but it is also affected by the num-
bers in our sample. For example, a p value may be 0.01 because we have a
large sample and there is a weak association, or because we have a small
sample and there is a strong association.

The relative risk measure comes from consideration of a contingency table
of the accompanying form. A table with such headings could apply in two
medical research situations.

Disease No Totals
Disease
Factor present | a b a+b
Factor absent | ¢ d ctd
Totals a+tce b+d a+btc+d

One situation is that of a prospective trial in which people who are all ini-
tially disease free are followed until a certain number contract the disease.
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Some of the people have some possible risk factor (or protective factor) and
others do not. The estimate of the risk of disease over this time in those who
have the factor is then a/(a+b) and in those who don’t have the factor is ¢/(c+d).
A summary measure that will be of interest in judging the importance of the
factor in the risk of the disease is a measure of how big the risk of disease is in
those who have the factor in comparison to how big the risk of disease is in
those who don’t have the factor. This is the quantity

YUa+ b
C/(c +d)

called the relative risk. The relative risk gives a good summary of the results
of a prospective trial.

The other medical research situation giving rise to a contingency table with
these headings is a retrospective trial. In the retrospective trial some diseased
people are chosen and some nondiseased people or “controls” are chosen for
comparison. All the people are then asked about their previous exposure to
some possible risk factor or protective factor. While the table may look the same
as a table giving the results from a prospective trial, there is a major difference. It
is not possible to calculate risk in this situation. Risk in a prospective trial is the
proportion of diseased people out of the total of diseased and nondiseased people,
but in a retrospective trial the numbers in these two groups is entirely arbitrary.
Even the ratio of the “risks” according to exposure to some factor, the relative
risk, is not valid. If we choose few controls, then the diseased people may
form a very large majority in the group exposed to the risk factor but may also
form quite a large majority even in the group not exposed to the risk factor.
The two “risks” will then both be close to [, and so the relative risk measure
will be close to 1. On the other hand, we could gain a different impression if
we choose a large number of controls. For example, say we choose 20 con-
trols, with the remaining figures as given in the accompanying table.

Discase No Totals
Disease
Factor present | 100 10 110
Factor absent | 50 10 60
Totals 150 20 170

The “relative risk” would be

“m/lll)

oo

1.09
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If instead we choose 2,000 controls and the numbers were otherwise in the
same proportion, we would have the accompanying table and the “relative
risk” would be

100
19
Disease | No Totals
Disease
Factor 100 1000 1100
No Factor 50 1000 1050
Totals 150 2000 2150

For a retrospective trial what we need in place of relative risk is a measure
of the relationship between disease state and factor exposure that doesn’t de-
pend on the proportion of controls that we use. The measure that fits the bill is
called the odds ratio.

To explain the odds ratio, we first must explain “odds.” Odds are an old
measure of probability still used in gambling, particularly gambling on horse
races. The odds are 5 to I against a horse winning, or %1, if it is five times more
likely that the horse will lose than it will win. Some thought shows that this means
that the chance of losing is /s and the chance of winning is /. In the case of the
table on page 184, the odds of disease are '/ for those with the factor and */10
for those without the factor. The ratio of these two is the odds ratio. It is

For the case of the table at the top of this page, the case of 2,000 controls, the
odds ratio is

0
100/, 600

S *
Y 1000

which again equals 2.00.
After simplification, the odds ratio for the 2 x 2 table on page 183 is

a b

c d
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axd

bxc’

An odds ratio of | means that there is no relationship between classification
into rows and classification into columns: The odds of being in a particular
column are not affected by which row a person is in.

The odds ratio has some additional advantages. We have previously noted
that there is a symmetry in a 2 X 2 contingency table in that it may be arbitrary
whether we define the groups or categories as the rows or as the columns. The
odds ratio gives the same value for the relationship in a table regardless of
whether we define either the groups or the categories to be the rows or the
columns. The odds ratio makes sense as a measure of the relationship between
the classification into rows and columns regardless of the context of the table.
It applies to all 2 x 2 contingency tables, not just tables of the results of a
medical trial on disease and risk-factor exposure. There is theory that allows
us to apply confidence intervals to measures of the relationship between the
classification into rows and columns in a 2 x 2 contingency table. This theory
leads to fairly simple formulae when the relationship is expressed in terms of
odds ratios.

Confidence Intervals on the Odds Ratio

Theory that is beyond the scope of this text shows that if the numbers in the
boxes are sufficiently large, approximate confidence intervals can be worked
out for the odds ratio. Recall that a confidence interval is the range of values
of some underlying population parameter that could “easily” give rise to a
sample with the observed data. By “easily” we mean that we would not reject
a hypothesis that the underlying parameter was somewhere in the range. We
define “easily” in terms of the p value that would make us reject the hypoth-
esis. Here, a 95 percent confidence interval is the range of the underlying odds
ratio that might exist in the population that could “easily give” the sample
odds ratio. By “easily give” we mean that if we know the population odds
ratio, our sample odds ratio is not unusual in the sense that odds ratios at least
as far out as ours from the population odds ratio will occur by pure chance
more than 5 percent of the time.

OPTIONAL

To give the formula for the confidence interval for an odds ratio, some further
notation is necessary. Let z, be a number such that the probability of a value cho-
sen from a standard normal distribution being between —z, and +z, s ¢. For ex-
ample, if ¢ is 0.95, z, is 1.96 because 95 percent of the probability in a standard
normal distribution is between —1.96 and +1.96. The 100 x g—percent confi-

dence interval for the odds ratio is then given by the following formula:
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1 1 t 1
e In(Odds Ratio)y+z, | —+—+ —+—
Xpl: ( ) Z{/\/[l b - dj|

The symbols exp and In stand for the mathematical functions of exponentia-
tion and taking natural logarithms, functions that are standard on scientific
calculators. For example, the 95 percent confidence interval is given by

| 1 1 1
exp [ln(Odds Ratio)x 196 —+ —+ —+ —}
a b ¢ d

In particular, say we were dealing with the table on page 184. The odds ratio.
as we have seen, is 2.00. The formula tells us that the 95 percent confidence
interval on this odds ratio is

| 1 ]
exp {ln(Odds Ratio) +1.96 | ——+ —+ —+ —} =(0.781.5.12).
100 10 50 10

Previously our confidence intervals have been symmetrical about the estimate
from the data. The nature of the calculations means that this is not the case for
odds ratios, so 2.00 is not in the middle of the range 0.781 to 5.12.

END OPTIONAL

CLASSIFICATION IN MORE THAN TWO DIRECTIONS
AND SIMPSON’S PARADOX

Imagine we tried out a new treatment for a serious disease in two hospitals,
A and B, with the following results.

died lived

new 100 100

old 10 1

Results from hospital A

died lived

new 1 100

old 100 1000

Results from hospital B
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At hospital A the odds of living with the new treatment are 1/1 and with the
old treatment are 1/10, so that the odds ratio is 10 in favor of the new treat-
ment. When the experiment was repeated in hospital B, the odds of living with
the new treatment are 100/1 and with the old treatment are 10/1, so that again
the odds ratio is 10 in favor of the new treatment. So far, so good, but then
someone suggests combining the results of the two treatment trials to present
the figures in an overall form, as shown here.

died lived
new 101 200
old 110 1001

Results from A and B combined

The odds of living with the new treatment are 200/101 and the odds of living
with the old treatment are 1,001/110. This is an odds ratio of 0.22 in favor of
the new treatment. In other words, it is an odds ratio of 1/0.22 or 4.6 against
the new treatment. Which treatment would you rather have? Both sets of indi-
vidual hospital figures are strongly in favor of the new treatment, yet the com-
bined figures are strongly against. Which should be believed?

This is Simpson’s paradox. The resolution of Simpson’s paradox is to note
that hospital B has a far better success rate overall. We will assume that they
deal only with mild cases of the disease. Hospital B is also far more liketly to
be using the old treatment than hospital A. By combining the two tables, we
would then be comparing the results of applying mainly the old treatment to
mild cases of the disease with the results of applying mainly the new treat-
ment to severe cases of the disease. The combined table is misleading. The
new treatment is better.

Simpson’s paradox can arise whenever along with classification into group
(live or die) and category (new or old treatment) there is a third direction of clas-
sification (e.g., severe or mild disease) that is ignored in combining information.
The third direction of classification is sometimes referred to as a confounding
variable. A similar effect of confounding variables can occur in the situation of
continuous measurements on two groups. In general, things become more com-
plicated when there are more than two directions of classification or confounding
variables. Dealing properly with such situations is beyond the scope of this
text, but involves the topic of log—ltinear models and the Mantel-Haenzel test.

THE x* TEST WITH MORE THAN TWO
GROUPS OR CATEGORIES

The x? test generalizes easily to the situation where there are more than two
groups and/or categories. We might have m groups and n categories. We could
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then summarize our results in an m X n contingency table. The x? test is ap-
plied in a similar way to the way it is applied in the case of a 2 x 2 contingency
table. We use the same principle as in the 2 x 2 case to find the expected value
in each box of the contingency table and then calculate the value of

(0O-Ey
E

for each box and sum all these values. Under H,, the number we obtain comes
from a x%, distribution, and this gives us our p value as before. Here k is given
by the formula (number of groups — 1) x (number of categories — 1) or (rows
— 1) x (columns — 1). This formula relates to the number of entries we could
alter independently of each other and still keep all the row totals and column
totals fixed. This k is sometimes called the “degrees of freedom.” As before,
the test is approximate and should not be used if any E is less than 5. Where
there are E values less than 5 it may be possible to avoid the problem by
combining rows or combining columns.

For example, say we were interested in whether there was some relation-
ship between women and men who form couples in terms of favorite primary
colors. The results of this survey are given in the table.

Observed women
red yellow | blue totals
m |red 25 10 5 40
e |yellow |9 11 10 30
n |blue 6 4 10 20
totals | 40 25 25 90

To test this, we might choose ninety women who have male partners and
ask each of the women and each of their partners to specify which was their
favorite color as displayed on a test sheet painted with the three primary col-
ors. If four-ninths of the women chose red and one-third of the men chose
yellow, we would expect one-third of the four-ninths of all women who chose
red to have partners who chose yellow. This would mean that */»7 of the total
(i.e., 13.33 couples) would be in the box “woman likes red and her man likes
yellow” (the calculations are performed ignoring the impossibility of frac-
tions, but we have rounded to two decimal places).
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This is our expected value E:

Expected women
red yellow | blue | totals
m red 17.78 11.11 11.11 | 40

e yellow | 13.33 8.33 833 |30

n blue 8.89 5.56 5.56 20

totals 40 25 25 90

The survey gives us our O or observed value. We calculate

(0 - E)’
E

for all nine boxes similarly and add to give a number x. If there is no relation-
ship between partners in terms of primary-color preference, this figure x would
ideally be zero, for the Os would match all the Es, but simply as a result of
random chance we will usually not have all the Os matching all the Es exactly.

Nevertheless, if there is no relationship between partners in terms of primary-
color preference, the Os and the Es are not usually a bad match, so the sum of
the

(O-E)
E

for the nine boxes is not usually a large figure. The theory says that if there is
no relationship, the value obtained for x will be approximately a value from a
x°, distribution. Here k is 4, as there are three rows and three columns: (3 -1)
x (3 — 1) = 4. Tables or a computer will show values as large as x or larger
occur only p of the time. This is then our p value. It is telling us that if there
was no relationship between color preferences of partners and it were chance
alone leading to the mismatch between Os and Es, there is probability p that
the mismatch would be at least as bad as the observed mismatch. If this p
value is small, a better explanation for the mismatch between the Os and the
Es might be that it is not just random chance that is operating but that there is
a real relationship between the color preferences of partners. Straightforward
calculation (tedious by hand, easy by computer) shows that the sum of the
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(O-E)
E

for the nine boxes is 13.93. The computer or tables then tell us that 99.248
percent of the time values chosen from a x?, distribution are smaller than 13.93.
In other words, our p value is 0.00752. Then, as always, we have a choice.
Either we believe that there is no relationship between the color preferences of
partners—it just looks that way (in the sense of the Os being a particularly bad
match to the Es) because a less than | in 100 chance came off—or else there is
an underlying reason for the Os not to match the Es. The underlying reason is
that there is some connection between color preferences among partners.

As a second example using the same data, let us assume that our ninety
couples are representative of all men and women. We can then use the same
data to ask whether color preferences in women are different from color pref-
erences in men. Here are the relevant figures:

red yellow | blue

women | 40 25 25 90

40y 175 (@225

men 40 30 20 90

40y | (27.5) |(22.5)

80 55 45 180

The expected values have been calculated and are given in parentheses. This
gives a value of 1.01 for the sum of the

(O-E)
E

for the six boxes. We say that we have a x* value of 1.01. The degree of free-
domkis(3—1)x(2-1)=2.A computer or tables shows us that 1.01 is not an
unusual value from a x2, distribution (p = 0.603), so we can conclude that the
tigures here give no convincing evidence that men and women differ in their
color preferences. The differences from the ideal or expected values can eas-
ily be explained by chance, and, indeed, 60 percent of the time chance alone
would lead to bigger differences than those seen here.

As a third example, say we were relating the four blood groups (O, A, B,
AB) to eye color and we had the eye colors blue, green, hazel, and brown.
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Now say one-tenth of the population had green eyes and one-thirtieth of the
population had blood group AB, and say also that we had 1,000 people in our
survey. The expected number of green-eyed people with blood group AB is
then /10 x /3 % 1,000 = 3.333. This expected number is too small. The x? test
will not be valid with fewer than 5 for any expected value. We could then
“collapse” our categories “green” and “hazel” eye color. Instead of four eye
colors we would have only three: blue, brown, and hazel or green. If one-tenth
of the population had hazel eyes we would have two-tenths in the combined
category “green or hazel,” so then we would expect /10 X /3 x 1,000 = 6.667
to be in the category “green or hazel” eye color and blood group AB. Our
calculations would then be valid, as the expected value in this box is more
than 5 (assuming there were also more than 5 in all the other remaining boxes).

SIMILAR TESTS BASED ON THE x* DISTRIBUTION

There are several other tests that use the chi-square distribution in a similar
way to the chi-square test of association. However, these tests apply to situa-
tions that are rather different from the situation of multiple groups and catego-
ries that applies in the case of the chi-square test of association.

McNemar’s Test

One such test is McNemar’s test. This test was previously described as part
of the description of the sign test in Chapter 4. McNemar’s test applies when
we have pairs and each member of the pair can fit into one of two categories.
In the case of the straightforward sign test, the pairs are usually pairs of mea-
surements made on the same individual before and after an intervention and
the categories are “better” or “worse.” In the case of McNemar’s test, the pairs
are usually separate but related individuals and the two categories are some-
thing other than “better” or ““‘worse.” The ordinary simple calculations of the
sign test can be applied directly to give an exact p value. However, the same
theoretical approach alluded to in the optional discussion of the theory of
Fisher’s exact test can be applied to give an approximate p value in the case of
McNemar’s test. This approximate p value is obtained via a calculation that
gives a number from a y?, distribution.

For example, say we wanted to know whether an antismoking program is
more effective against smoking in women rather than men or vice versa. Our
H, is that men and women respond to the program equally. We will assume
that there is a lot of variation in people’s ability to give up smoking and that a
lot of this variation depends on people’s social situation. We will then use a
strategy that will minimize the tendency of this variation in social situation to
swamp the effect we are looking for, the possible differences in the effective-
ness of the campaign on men and women. In particular, we will look at hus-
band and wife pairs, for both partners share the same social situation. Say that
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1,920 husband and wife pairs, all of whom smoked, were given the antismok-
ing program. Assume that the result was that in 1,000 pairs both husband and
wife continued to smoke, in 900 pairs neither continued to smoke, in 15 pairs
the wife stopped but the husband didn’t, and in 5 pairs the husband stopped
but the wife didn’t. This scenario can be presented in the form of a table:

husband
smokes no
smokes

w | smokes 1000 5 1005
1
f no 15 900 915
€ | smokes

1015 905 1920

According to the theory behind McNemar’s test, if H,, is true then the quantity

(15 -5)?
15+5

is approximately a number from a x?; distribution. This quantity is 5 and the
computer or tables show that values at least this large in a x?, distribution
occur 0.0253 of the time. The conventional benchmark p value of 0.05 seems
to me to be reasonable here, so I would conclude that it is reasonable to be-
lieve that the antismoking program is more effective in women than in men.
Note that the calculation ignores the 1,900 cases where there was no differ-
ence between the men and the women in a partnership. Also note that the
exact p value can be obtained by reasoning that if men and women are equally
likely to give up smoking, then in those cases where just one of the pair gives
up it is equally likely to be the man or the woman. In other words, we are
dealing with the binomial random variable based on twenty cases and a prob-
ability of 0.5 of a case going one way or another; equivalently, we can say that
we are dealing with a two-tail sign test based on twenty cases. Since we have
obtained the value of 5 going one way and 15 going the other, the computer or
direct calculation (see the sign test in Chapter 4) shows that the p value is
0.04139. We see that the figure we obtained using the traditional approach to
McNemar's test with the x?, distribution is a rough approximation to the exact
probability obtained by the conventional sign test.

For interest, let us look at the result of a statistical test that uses the same
data but ignores the pairing. The data tell us that there are 1,015 men who
continued to smoke and 905 who gave up, and 1,005 women who continued
to smoke and 915 who gave up. These data can be analyzed by an ordinary
chi-square test of association with the help of the table on p. 194 (the numbers
in parentheses are the calculated expected numbers).
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men women
smoke 1015 1005 2020
(1010) | (1010)
no smoke 905 915 1820
(910) [ (910)
1920 1920 3840

Note that the numbers in this table are numbers of individuals, whereas the
numbers in the table for McNemar’s test are numbers of couples. The ex-
pected value in both the boxes in the top row is 1,010, since half of the popu-
lation is of each sex so ideally we would expect half the smokers to be of
either sex. Similarly, the expected value in both the boxes in the bottom row is
910. Calculation then gives a x?, value of 0.1045 and hence a p value of 0.747.
Unlike our previous result, this is certainly not convincing evidence of a sex
difference in the effectiveness of the antismoking campaign. We see that ig-
noring the pairing obscures our previous finding. By focusing on the variabil-
ity in smoking status within couples, McNemar's test tells us that there is
greater effectiveness of the antismoking campaign in women than in men. If
we ignore pairing, this finding is overwhelmed by the factors that tend to
make people change smoking status as a couple.

Chi-Square Test of Goodness of Fit

Sometimes we have theoretical reasons for believing that the data should
follow a certain pattern and we want a test that tells us if it is reasonable to
hold on to this belief when we obtain actual data. As a simple example, we
may for some reason believe that all three primary colors should be equally
likely to be a favorite color. Using the data on color preference from our ear-
lier example, we see that red, yellow, and blue are favorites for a total of 80,
55, and 45 people, respectively. The theory of equal favorites would give us
that 60 people each out of the 180 total would select red, yellow, and blue.
This is an ideal or expected set of results. We want to know whether our actual
figures are so far out from this ideal that it is not reasonable to put the differ-
ence down to chance. There is theory that tells us that under the null hypoth-
esis of equal favorites, the sum of

(O-Ey
E

for the three boxes will be a figure from a x?, distribution. Here k, the degree
of freedom, is the number of boxes — 1.

(O-E)y (80-60) (55-60) N (45 - 60)*
= +

The sum of = 10.83.
60 60 60
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The computer or tables of a x*, distribution show that if the null hypothesis is
true we will obtain a smaller number than this about 99.56 percent of the time.
In other words, our p value is about 0.0044. It seems more reasonable there-
fore to believe that the primary colors are not all equally attractive. This is an
example of the chi-square goodness of fit test.

The chi-square goodness of fit test can be used in more complicated cases.
For example, we may know that if data come from a certain normal distribu-
tion, then a certain proportion of the sample should be in various categories
defined by a range of values. For example, if we thought we knew there was a
normal distribution with certain parameters describing the heights of people,
then we would believe that certain proportions of people should have heights
in the ranges 130 to 150 cm, 150 to 170 cm, 170 to 190 cm, or 190 to 210 cm.
These give the expected numbers in the various categories, and we can com-
pare these with observed numbers using the chi-square goodness of fit test. If
the test yields a small p value, there are two possible explanations. On the one
hand, our assumed normal distribution may be correct, but as a result of a
chance that occurs a proportion p of the time we obtained observations that
were a poor match to the true distribution. On the other hand, it may be more
reasonable to believe that the population from which we have made our obser-
vations does not have a distribution of heights that matches our assumed nor-
mal distribution. As for the chi-square test of association, the calculation is not
valid if the expected numbers in any of the boxes is less than 5. If we do
not know the parameters of the normal distribution and our hypothesis is
simply that it is a normal distribution with parameters to be estimated from
the data, the theory tells us to deduct a degree of freedom for every parameter
estimated. With four height categories, two parameters to be estimated from
the data to describe the normal distribution, and a further degree of freedom to
be deducted (to allow for fixed totals), we would be dealing here with a x?,
distribution.

SUMMARY

« Fisher’s exact test gives a p value that tells us how difficult it would be for chance
alone to lead to an apparent association between two methods of classifying indi-
viduals that is at least as strong as the association present in our sample.

» The odds ratio measures the strength of the association evident in the sample, and
confidence intervals can be calculated for the population odds ratio.

* The ¥ test involves approximations, but can be used in place of Fisher’s exact test

when expected values in every box are greater than 5. It has some theoretical and
practical advantages in comparison to Fisher’s exact test.

.

Unlike Fisher’s exact test, the x* test generalizes to situations in which there are
more than two groups and/or categories.

* A test based on the x* distribution can be used to assess goodness of fit to some
theoretical distribution.
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In short, with two groups and two categories and small numbers, use Fisher’s
exact test to see if there is convincing evidence that being in a particular group
affects which category an individual is assigned to. With more than two groups
or more than two categories or if numbers are large, use the x? test.

QUESTIONS

1. The careers of 50 males who at the age of eighteen years were over 180 cm tall
were compared with those of 100 males who at the age of eighteen years were
under {70 cm tall. It was found that 12 men in both groups became administra-
tors. Do you believe that this study provides reasonably convincing evidence that
height is a factor in determining a man’s chance of becoming an administrator?

2. A number of farms are selected at random from a list of farms. Thirty are family
farms, and of these, ten are classified as being severely eroded. Twenty farms are
owned by absentee landlords, and of these, fifteen are classified as being severely
eroded. Does this data provide reasonably convincing evidence for an association
between absentee ownership and erosion?

3. A drug thought to increase strength was given to three men, with nine other men
acting as controls. The results in arbitrary units were 19, 20, and 21 for the men
with the drug and 10, 11, 12, 13, 14, 15, 16, 17, and 18 for the men without the
drug. The drug was also tried on nine women, with three women acting as con-
trols. The results were 5.5, 6.0,6.5,7.0,7.5, 8.0, 8.5,9.0, and 9.5 for women with
the drug and 4.0, 4.5, and 5.0 for women without the drug. Perform appropriate
tests to see if there is convincing evidence that the drug works for men and for
women. Combine the results for both men and women and repeat your statistical
test. Explain your result.

4. A survey was conducted in which people were asked their religious affiliations
and also asked whether they regarded preservation of the natural environment as
a top-priority issue. Of thirty-three protestants surveyed, ten rated the environ-
ment as a top priority; the same was true of nine out of nineteen catholics, four
out of ten moslems, and twenty-eight out of forty-one atheists. Does this survey
provide reasonably convincing evidence that the priority accorded to the environ-
ment is related to religious affiliation?

5. A researcher is interested in a possible association between having a carpeted
bedroom and asthma. Accordingly, she identifies 200 families, each with two
children where just one of the children has asthma. She records the information
that in 130 families both children’s bedrooms are carpeted and in 40 cases neither
children’s bedroom is carpeted. In the remaining cases only one child’s bedroom
is carpeted and in 8 of these it is the nonasthmatic child’s bedroom that is car-
peted. Perform the most appropriate test on these data. Do you believe there is an
association between asthma and carpet in the bedroom? Perform a Fisher’s exact
test (or chi-square test of association) on these data. Why are the results different?

6. To testif a die is fair, it is thrown 600 times. It lands on the numbers one to six, 93,
08, 107, 102, 91, and 109 times, respectively. Perform an appropriate test and
discuss whether you believe that the die is fair.



CHAPTER 9

Statistics on More Than
Two Groups

Most of the work on statistical tests so far has concerned comparing measure-
ments between two groups. The last chapter considered situations where there
were more than two groups, but only dealt with categorical measurements,
deciding which category each member of each group belonged to. In this chapter
we consider situations in which there are more than two groups and continu-
ous measurements are made on each of the members of the groups. In the first
part of this chapter we consider situations in which there are a limited number
of groups and there is no natural ordering of the groups. The groups might
correspond to people with a disease who are grouped according to which of
several different medications they have received, or plots in a field grouped
according to the type of fertilizer they have been treated with, or people grouped
according to their eye color. This is the topic of ANOVA.

In the second part of this chapter we consider a situation in which the num-
ber of groups can in a sense be infinite. An example where the number of
groups are in a sense infinite occurs when we ask about the relationship be-
tween weight and height. To answer this question we could divide people up into
groups according to whether their heights are in the range 130 to 150 cm, 150 to
170 cm, 170 to 190 cm, or 190 to 210 cm and then measure their weights. How-
ever, we would do better if we divided height more finely than into groups of
20 cm. The best approach is to go further and deal with all the heights that
occur separately. Since the number of possible heights are unlimited, we are
in a sense dealing with an infinite number of groups. As well as the number of
potential groups being infinite, another feature of this problem is that the groups
are not separate unrelated categories but have a natural order. This work will
be dealt with later in the chapter under the heading, “Regression.”
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ANOVA: TESTING THE NULL HYPOTHESIS THAT
THE MEANS OF MORE THAN TWO
NORMALLY DISTRIBUTED GROUPS ARE THE SAME

Motivation

We may be interested in comparing the effect on the growth rate of plants of
more than two different types of fertilizer. To be specific, imagine that we
wanted to examine the effect of eight different types of fertilizer, which we
will call A, B, .. ., H. We could deal with this problem by reducing it to a
number of different comparisons between the effects of two different types of
fertilizer. We know how to do this: Use the independent samples ¢ test. We
could then make every possible pairwise comparison. In other words. we would
compare A with B, A with C, A with D, A with E, A with F, A with G, A with
H, B with C, Bwith D, ..., G with H. However, this would be tedious: *C, =
28 pairwise comparisons are possible.

There would be another problem with this approach. Traditionally, we de-
cide if a difference is “statistically significant” by asking how easy would it be
for coincidence alone to explain differences in the averages of two groups. If
we have to rely on a long coincidence to explain differences, we decide that
coincidence is not a good explanation, but instead there are real differences
due to the different fertilizers and not just due to chance. Our examination of
twenty-eight comparisons between pairs of fertilizer becomes in effect twenty-
eight different searches for a long coincidence. In the presence of randomness, if
we look long enough for a long coincidence we will find it. If here we take a long
coincidence to mean the traditional benchmark p value of 0.05 or [ in 20, we are
giving ourselves twenty-eight attempts at finding a 1 in 20 coincidence. It seems
likely that chance alone would lead us to find such a coincidence, and using the
benchmark of p = 0.05 we would then unjustifiably declare the coincidence to be
“statistically significant.” One approach to dealing with this situation is to
lengthen what we consider to be a sufficiently long coincidence for statistical
significance when we make each comparison. In other words, we reduce the
benchmark p value used in each comparison so that overall, by the time we
have finished twenty-eight comparisons, if random chance alone is operating
we have the required small probability {(e.g., 0.05) of finding a statistically
significant difference for one or more of the comparisons. Unfortunately, it is
difficult to calculate how much the benchmark p value used for each indi-
vidual comparison should be reduced. The calculation is made difficult by the
fact that the various comparisons are not independent of each other. If it has
been found that chance alone could very easily explain differences between
group A and each of the other groups B to H, then it is more likely that each of
the groups B to H are similar enough to each other for chance to very easily
explain their differences. One approach is to use a very rough approximation
that ignores such difficulties. In the situation here of twenty-eight compari-
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sons this rough approximation tells us to require that each comparison be tested
for statistical significance using a benchmark p value of 0.05/28. The name
Bonferroni is attached to this approach, though Bonferroni showed that this
approach would lead to an overall p value of less than 0.05.

Philosophy of ANOVA

The pairwise comparisons approach is awkward. A better approach is a
method that deals with all the data at once. The method is called ANalysis Of
VAriance or ANOVA. We start with the null hypothesis that all the data in the
various groups come from the same normal distribution. Figuratively, we can
think of numbers chosen at random from a normal distribution being written
down on pieces of paper and then placed in a hat. There are other hats contain-
ing numbers drawn from different normal distributions. A hat is chosen and
some pieces of paper are pulled from this hat and piled into a group. The
process is repeated several times to create several groups. It is quite likely, but
not certain, that in choosing a hat to make each group we keep on choosing the
same hat. Our question is, “Do all the numbers in all the different groups
come from the same hat?” Our null hypothesis is that they do. We look for
evidence against this null hypothesis. To do this we start by assuming that the
null hypothesis is true (all the numbers in each of the groups all come from the
same hat). We then focus on measuring the variability of the individual num-
bers (How scattered are the numbers in the hat?).

We use two different methods of estimating this variability. The first method
is to estimate the variability within each group and form a pooled estimate of
the underlying variability of the individual values. The second method is to
estimate individual variability from the amount of variability of the group
means. If the null hypothesis is correct, the results of the second method di-
vided by the first gives a value which should be about 1, since both methods
are methods of measuring the same quantity: the individual variability. How-
ever, if the group means are scattered, not only as a reflection of random vari-
ability of the individual values but also because of real differences between
the true means of the various groups (the numbers in the different groups
come from different hats), then estimating the individual variability using group
means will generally give an overestimate. The individual variability overesti-
mated from the scatter of group means divided by the individual variability as
estimated by the scatter of individual values within groups is then likely to be
considerably larger than 1. This ratio of the two measures of individual vari-
ability is known as an fratio. If we had thought that all the numbers came from
the same hat, an fratio of more than [ tells us that the group means are more
widely scattered than we would have expected given the amount of variability
we see within the groups.

Theory that is too complicated to be described here tells us that if the null
hypothesis is true, the f ratio is a value from a particular probability distribu-
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tion known as an F distribution. If the fratio we obtain is a value so far above
1 that the £ distribution shows values this big or bigger “hardly ever” occur,
then we reject the null hypothesis that the group means are all the same. What
we actually obtain here is a probability of obtaining a value at least as large as
our fif H, is true. This is our p value. If our p value is a probability that “hardly
ever” occurs, it may be more reasonable to believe that the variability of the
means overestimates the individual variability not because of a chance that
“hardly ever’” occurs but because there are real differences between the true
means of the various groups. Once again, “hardly ever” is quantified by our
benchmark p value.

There are a whole family of different F distributions appropriate here, de-
pending on the number of values used in both of the estimates of variability
(the degrees of freedom). The notation used is F'y,v,. Here, p, is the degrees of
freedom (number of estimates of variability) used in the numerator of the ratio
of the two estimates of individual variability and equals the number of groups
minus 1, and p, is the degrees of freedom (number of estimates of variability)
used in the denominator and equals the sum of numbers minus 1 in each of the
groups. In practice, the calculations are lengthy and usually performed on a
computer, and the computer attends to details about these degrees of freedom.

ANOVA Assumptions

ANOVA is a good method for making a decision between two hypotheses.
One hypothesis H, is that all the values in all the groups are chosen from the
same normal distribution. The other hypothesis is that all the values in all the
groups are chosen from normal distributions with different means but all shar-
ing the same value for their standard deviation. These two options can be
called the ANOVA assumptions. Often, though, we do not want to make a
decision between these two rather restrictive options. We often just want to
decide whether or not it is reasonable to believe that the means of all the
groups are the same, regardless of assumptions about normality and equal
variances. Applying ANOVA when the assumptions are not met can give mis-
leading results, as the two examples in the following optional sections show.

OPTIONAL

Violation of the Normality Assumption

If the numbers in each of the groups are not normally distributed, the ANOVA
calculation of a p value will not be valid. For example, if the numbers in all the
groups are drawn “from the same hat” but came from a distribution that only
took the values 0 and 1 with equal probability, then the basic probability laws
of Chapter 3 can be used to work out how often the between-group variance
will be positive but the within-group variance will be zero. In particular, there
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are 2° or 512 ways of choosing a 0 or a | nine times in a row, with all these
ways equally likely. The first three choices, the second three choices, and the
third three choices can be taken to be the groups. Simple counting then shows
that there is a 6 in 512 chance that the between-group variance will be positive
but the within-group variance will be zero. The two estimates of individual
variability, one based on variability among group averages and the other based
on variability within each of the groups, will therefore be positive and zero,
respectively. The fratio is then a positive divided by zero; in effect, it is infinity.
In other words, with this distribution the p value corresponding to what is in effect
an infinite fratio would be 6/512 or about 0.012, whereas the p value of an infinite
fratio if the numbers all came from a normal distribution would be zero. Simi-
larly, it can be shown that if the numbers are drawn from the distribution that
gives Os and 1s with equal probability, the p value associated with an fratio of
7.0 1s 42/512 or about 0.082. If instead the numbers are drawn from a normal
distribution, an fratio of 7.0 would correspond to a p value of 0.027. In this
example, if we incorrectly assume normality, we may decide more easily than
we had intended to reject the null hypothesis when it is true.

Violation of the Equal Variance Assumption

In this example we show that if the different groups are normally distrib-
uted but are different in both means and variances, the ANOVA calculations
may lead us to not choose the alternative hypothesis that the groups are differ-
ent when it is clearly appropriate to believe that they are different. For ex-
ample, say one group was widely scattered but with values centered on 60,
and there were two other groups with very little scattering and one of these
consisted of numbers very close to 40 and the other consisted of numbers very
close to 80. If we round the numbers to two significant figures, a sample of
three values from each of these three groups might then consist of the num-
bers 0, 60, 120 for the first group; 40, 40, 40 for the second group; and 80, 80,
80 for the third group. It is obvious to anybody looking at these figures that the
three groups do not look like three groups of numbers drawn out of the same
hat. Any sensible method of assessing group differences should find evidence
that the groups are different. However, it turns out that in the ANOVA calcula-
tions both methods of estimating individual variation (with one method based
on variation within groups and the other based on the variation of group aver-
ages) give exactly the same answer. In other words, the fratio is 1.0 and the p
value corresponding to this is 0.42, so according to ANOVA there is no evi-
dence that the numbers come from different hats.’

Checks of the Assumptions

Since applying ANOVA when the assumptions are not met can give mis-
leading results, it is desirable to check to see if there is cvidence against the
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ANOVA assumptions using box plots and preliminary statistical tests. Such
tests are available, but are often omitted. In the two examples here it was the
example in which there was violation of the equal variances assumption where
the ANOVA analysis seemed to be most misleading. In this example we ob-
tained a p value of 0.42 where common sense suggested that we should have
obtained a p value indicating strong evidence against the null hypothesis. In
the example where there was violation of the normality assumption, the ANOVA
calculations underestimated the true p value, but the true p value and the p
value calculated using ANOVA were both small. This suggests that it is the
violation of the equal variances assumption that can lead to decisions about
hypotheses that are more obviously inappropriate. In practice, checks to see if
there is evidence against the equal variance assumptions are sometimes per-
formed, but tests to see if there is evidence against the assumption of the nor-
mality of each group are rarely done.

The common test for equal variance is called the Levene test. This test uses
the principle that equal variances within each group by definition means equal
values for the average of the square of the differences between each value and
the group average. This then implies equal values on average for the size—
disregarding plus and minus signs—of the difference between a value and its
group average. The Levene test then does a preliminary ANOVA to see if
there is evidence against the assumption that the size of the difference be-
tween a value and its group average is on average the same in every group. If
a Levene test shows that it is not reasonable to believe that the groups have the
same variance, then we have two options:

1. The most commonly used option is to hang on desperately to the ideas of testing
null hypotheses. With this option we admit that the variability in the different
groups are different. We dismiss our null hypothesis that the group variances and
averages are the same and instead produce another null hypothesis that states that
the group averages are the same but we don’t know anything about the group
variances. We then look for convincing evidence against this new null hypothesis.
We can no longer use the standard ANOVA on the data as it stands. Instead we
can use data transformation as described at the end of Chapter 5 or we can use a
nonparametric equivalent to ANOVA known as the Kruskal-Wallis test. This test
does not assume equal variances. It also does not use the actual data values, but
only uses their rank order. Since it does not use all the information we have avail-
able it is a less powerful test.

2. The alternative option is to argue that if we are convinced that the groups have
different measures of variability it is hardly reasonable to believe that they ail
have exactly the same means. Almost any intervention that affects variability could
be expected to have at least some effect on means. We can therefore finish at this
stage and say that we believe that the numbers in the different groups come from
different hats and so can be presumed to have different averages. Although this
option accords more with common sense, it is not the one commonly used.

END OPTIONAL
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ANOVA without Checks of the Assumptions

Often checks of the assumptions underlying ANOVA are omitted. ANOVA
is then applied in ignorance of whether the required assumptions are met.
While this approach isn’t ideal, it is commonly used in practice (see the fertil-
izer example later in this chapter for a typical application of ANOVA). Per-
haps the difficulties in the philosophy of hypothesis testing justify not adhering
closely to ideals. Alternatively, the equivalent nonparametric test can be used.
As mentioned in the optional sectional earlier, the equivalent nonparametric
test is known as the Kruskal-Wallis test and does not require the assumptions
required by ANOVA.

Contrasts and Post-Hoc Tests

If the end result of an ANOVA is that there is evidence that there are real
differences between the groups, there are further questions that we can ask.
For instance, in the case of the eight different fertilizers, we may want to know
if just one of the fertilizers gave an outstanding result and if it would be rea-
sonable to believe that the other seven fertilizers all gave the same growth rate.
There is a philosophical problem here. If we ask this question before doing the
experiment and we have a particular fertilizer in mind, the correct approach is
an independent samples 7 test, testing this fertilizer against the average of all
the others. In the language used in ANOVA such testing is called a “contrast.”
If we ask this question after seeing the results and without having a particular
fertilizer in mind, we need to remember that with eight groups, one is bound
to be the biggest and the biggest of eight could easily be outstanding mainly as
a result of chance factors. ANOVA may have told us that the groups are too
different in their averages for these differences to be put down to variability of
individual plants. This does not necessarily mean that the biggest is the one
that is different. For example, it could be that the eight different fertilizers are
in two groups of four, a group of inferior fertilizers that all have identical
small effects on plant growth rates and another group of superior fertilizers
that all have identical big effects on plant growth rates. The fertilizer with the
biggest effect may stand out simply because, by chance alone, the biggest of
four is likely to be unusually big. To try and tease out answers to questions
like this is the subject of post-hoc tests (in other words, tests after the event of
deciding that there are real differences somewhere between the fertilizers).

There is a variety of post-hoc tests with different philosophical approaches.
The simplest approach is multiple ¢ tests of all possible comparisons with the
use of Bonferroni adjustment to the benchmark p value to choose which
pairwise comparisons are “significantly” different. However, in many situa-
tions the use of post-hoc tests would come close to ignoring common sense.
Our null hypothesis that eight different fertilizers all had the same effect on
growth rate was already close to the absurd. If fertilizers are different then
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they should have different effects on plant growth rates. If we have found that
chance alone cannot reasonably explain the differences in the performance of
the eight different fertilizers, why should we have fallback positions? By
fallback positions we mean retreating to the belief that, say, seven of them are
the same and just one is outstanding, or that they are in two groups of four and
performance within each group is identical. We might be able to have one or
other or both of these fallback positions because post-hoc tests show that chance
could then easily explain the remaining differences. If we are forced to drop a
null hypothesis that was barely reasonable, that the different fertilizers all had
identical effects, it seems more reasonable to now believe that different fertil-
izers all have different effects rather than believe in groupings simply because
chance could then easily explain remaining differences.

ANOVA Example

ANOVA calculations are generally lengthy and most conveniently performed
by computer. The computer was given data on the growth rate of plants treated
with different fertilizers. The growth rates are expressed in arbitrary units and

are given in the accompanying table.

Fertilizer A Fertilizer B Fertilizer C Fertilizer D Fertilizer E Fertilizer F Fertilizer G Fertilizer H
715,723, | 70.2,62.7, | 66.4,70.8, | 83.8,75.9, | 80.1,78.7, | 76.1,71.6, | 81.2,72.1, | 81.5,73.1,
68.2,81.1, | 63.2, 704 | 69.6 75.4 779 83.6,74.7, | 714 78.0
69.7,71.8, 75.8

65.1, 664

The pds computer program written to accompany this book gives the one-
line result p = 0.003466. In other words, if all the numbers for all the fertiliz-
ers were “pulled out of the same hat,” then 99.6534 percent of the time the
averages of the numbers for each fertilizer would be less widely scattered than
the averages here. This can be predicted from the observed amount of scatter-
ing of the numbers for each fertilizer. The prediction is valid if all the numbers
are drawn from the same normal distribution. It seems more reasonable to
believe that the type of fertilizer affects growth rate rather than to believe that
we got a suggestive result by sheer coincidence, the sort of coincidence which
occurs only 0.003466 of the time. The “more information” button in the com-
puter program gives means and confidence intervals for the means for each
type of fertilizer. It also gives some intermediate results from the calculation
and gives the result of the Levene test, which indicates that chance could “eas-
ily” account for observed differences in standard deviations in each group (p =
0.66). A separate Kruskal-Wallis test gives a p value of 0.00778. This tells us
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that even if we ignore the actual numbers and only look at the ordering of the
thirty-two numbers from the eight groups, the results are still strongly sugges-
tive of differences between the groups. The results are suggestive in that 99.222
percent of the time the ordered values would have values from the various
groups more interspersed than they are here. The amount of interspersion is
judged by a single figure calculated from each possible ordering, much like
the Mann—-Whitney U value is calculated in the case of just two groups.
Once again, we should note that the null hypothesis is close to absurd. Of
course different fertilizers are going to have different effects on growth rates.
The null hypothesis would only make sense if the different fertilizers were
intended to have the same concentration of the same ingredients but were
made in different factories whose production standards may or may not differ.

REGRESSION

Motivation

Often data consist of pairs of figures measured on each individual (e.g.,
weight and height), and we want to see if there is a relationship between the
figures in each of the pairs. For the time being we assume that we are looking
for a linear or straight-line relationship. In other words, we are assuming the
following:

» If we are dealing with people who have average height, then on average they have
average weight.

* If we are dealing with people who are 1 cm taller than average height, then on
average they are 3 kg heavier than average weight where 3 is some constant.

+ If we are dealing with people who are 2 c¢m taller than average height, then on
average they are 2 x 3 kg heavier than average weight.

* If we are dealing with people who are 3 cm taller than average height, then on
average they are 3 x (3 kg heavier than average weight.

* And so on.

In other words, we assume that for each extra cm in height, average weight
goes up 3 kg, where (3 is some unspecified constant. This is the same as say-
ing that plotting average weight against height on a graph gives a straight-line
relationship. If average height is, say, 175 cm and average weight is 65 kg, a
height of 1 cm is 2 — 175 above average and a weight of w kg is w — 65 above
average. The relationship described here can then be written mathematically
asw— 65 =[x (h - 175). This equation can be rearranged as w = 65 — 175 x
B + B x k&, which can be further simplified by writing the one symbol « in
place of the constant 65 — 175 x 3. The equation is then w = a + 3 X 4. This is
the normal way of writing an equation for the graph of a straight line where w
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is the measure on the vertical axis and 4 is the measure on the horizontal axis.
Traditionally, though, we use the symbols y and x for the dependent and inde-
pendent variable, respectively, so traditionally the equation for a straight line
is written y = o + Bux.

Graph of w=¢+8h
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Independent and Dependent Variables

Often we control one of the variables in that we make deliberate choices
about the values that we are interested in. For example, if we are interested in
the relationship between peoples’ height and weight, rather than just choosing
people at random and then measuring both height and weight we may choose
people of particular heights and then measure their weights. We then think of
height as the independent variable and weight as the dependent variable. Of-
ten, as here, the choice of independent variable is arbitrary: We could have
just as easily chosen people by weight and then measured height.

Sometimes, though, one of the variables is something obvious, such as
weight, and we choose people so that we have people with a range of different
weights. We then make measurements of something that isn’t externally obvi-
ous on the people of different weights. For example, we might measure their
cholesterol levels. In this situation, weight is the independent variable; it de-
pends on nothing but our choice. Cholesterol level is the dependent variable.
It may depend on the weight of the people who were chosen.

We are dealing with situations in which there is variability and we assume
that as well as a straight-line relationship there is additional variability or un-
certainty. We incorporate uncertainty into our model by adding an “error term”
e that takes different values for different individuals. If we use the term x, for
the measure of the independent variable on the ith individual, the term y, for
the measure of the dependent variable on the ith individual, and ¢, for the error
term here, we have the equation y, = o + Bx, + €.
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In this equation, x, might be the height of the ith person we looked at, v,
might be their weight, and e, is the error term appropriate for the ith person. In
the theory that follows, we assume that the value taken by e, is a value chosen
from a normal distribution centered on zero. The error term e, gives the verti-
cal distance of the point on the graph from the “ideal” straight line. Figure 9.1
illustrates these ideas. Finding the ideal straight line is a process known as
regression for reasons that will be explained later.

Why Use a Straight Line to Model the
Relationship between the Variables?

Note that we don’t know that the straight-line relationship is the correct
relationship between height and weight. However, a straight-line relationship
is a simple and plausible connection between the two variables in that an in-
crease in one variable results in a proportionate increase in the other.

Even if the relationship is more complicated, so that the best fit to the data
is given by a curve rather than a straight line, if we look at just a small part of this
curve and magnify it it will look very similar to a straight line (see Figure 9.2).

A straight-line relationship may then be a reasonable description of the data
over a limited range. Conversely, if we apply the formula for the fitted straight
line to extreme values, it may well not be valid, since the true relationship
between the two variables may only approximate a straight-line relationship
over a limited range. Application of a formula that fits data over a limited
range to values beyond that range is known as extrapolation. Extrapolation is
unlikely to be valid, because the true average relationship between the two
values, say height and weight, is unlikely to be exactly a straight line. Over a
limited range the deviation from the straight line may be imperceptible, but it
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Figure 9.2
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may become appreciable for extreme values. Unless we have data showing
that the relationship is valid for extreme values, we should not assume that
extrapolation is reliable. For example, in the weight versus height graph (Fig-
ure 9.1) the equation of the fitted straight line is w = -25.48 + 0.52 x s, with w
in kilogram and # in centimeters. Applying this formula to human children
less than 49 cm in height would give the prediction that on average they have
negative weight, which is of course impossible.

Defining the Straight Line of Best Fit
and Assessing Its Accuracy

If we believe that the connection between the two measurements on indi-
viduals can be reasonably described by the equation v, = a + Bx; + ¢, we can
ask some further questions. For example, how do we draw the straight line
that best fits the data? Your first thought may be to simply draw, by eye and
ruler, the straight line that looks like it gives the best fit. Compare this to the
situation of a single measurement on each of a large number of individuals. In
such a case we could mark the value for each individual along a line (a line
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graph; see Chapter 2) and then by eye put a mark where the values are cen-
tered. But we know how to do better than that with single measurements on
individuals. Rather than just using our eye, we use calculations to find the
mean (or some other measure of central tendency). We can then go further and
obtain a measure of the reliability of the estimate of the mean. This is done by
taking into account the number of data values and the variability of the data
about the calculated mean. The end result is a confidence interval for the mean.
Similarly, if we are given pairs of measurements on a sample of individuals we
can obtain estimates for a and 8 by calculation, rather than by drawing, and so we
define the line of best fit. Having obtained the estimates of « and 3, we can obtain
ameasure of how reliable the estimates are in the form of confidence intervals.
It can be shown that the line of best fit goes through the point representing the
average of the x values and the average of the v values. The calculation of the
slope of the line is rather lengthy and is usually done by computer.

The complete rules for calculating o and B will not be described here. In-
stead, the focus here is on interpreting the results of the computer calcula-
tions. A question that is of particular interest is, “Would it be reasonable to
believe that 3 is zero?” If B is zero, our equation y = o + Bx for the straight-
line fit becomes y = a. In other words, the value of .x has no effect on the value
of y. In the case of height and weight, this would mean that height has no
effect on weight. In general, if B =0, changes in the independent variable have
no effect on the dependent variable.

Further Analogy with the Case of the Single Variable

The situation here is similar to our first example of continuous variables
dealing with the height of Madagascans. We go back to the height of the
Madagascans now and fill in some ideas that we glossed over. We then draw
analogies with the calculations used in regression.

Our ideas on the height of Madagascans could be expressed by stating that
the height of the /th Madagascan is p + ¢,, where we assume that e, is some
error term obtained randomly from a normal distribution centered about zero.
For valid calculation of an estimate of 1 and the confidence interval for y, we
also need to assume the value ¢, for every individual is drawn from the same
normal distribution and that the value of ¢, for any one individual has no effect
on the value of ¢, for any other individual. (If people of similar heights tended
to mix with each other, then if the ith measurement was on an unusually tall
person [= ¢, > 0] this person’s friend would also tend to be unusually tall and
if the friend was the i + 17h person sampled we would have a tendency for e, , |
to be greater than 0. This sort of problem would invalidate our calculations.)
In brief, we state that our calculations will be valid if the ¢, values are normal and
identically and independently distributed. We don’t know in practice if the ¢, val-
ues meet these requirements. However, both experience and the central limit
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theorem suggest that often the ¢, values won’t be too far from normal, and
unless we do something silly like take all of our sample from the one location
that might happen to be the doorstep of the Madagascan dwarves association,
the e, values are likely to be identically and independently distributed.

If the heights of Madagascans are accurately described by the model p + ¢,
with the ¢, values normal and identically and independently distributed about
zero, we first estimate p by the mean of the sample and then we can go further
and obtain a confidence interval for our estimate of y. Finding a confidence
interval is in effect an indirect answer to the question, “In light of the variation
we see in individual values about our estimate of the mean, how reliable is this
estimate of the mean?” The confidence interval doesn’t answer this question
directly, but gives the range of values that could be taken by the true value of
u that, given the individual variability, could still “easily” lead to our observed
value of the mean. When there are n data values the calculation of the confi-
dence interval involves the £, | distribution. The subscript n — 1 relates to the
fact that with two data values there is just one measure of variability and with
n data values there are in effect n — 1 measures of variability.

The situation with the calculation of o and {3 in regression is analogous to
the calculations of w for the Madagascans. The calculations give the best esti-
mates of o and 3 from the data and valid confidence intervals, provided that
the model y, = a + Bx, + ¢, is correct and the e, values are normal and identi-
cally and independently distributed about zero. Confidence intervals can be
found for o and B based on the same philosophy as finding confidence inter-
vals for pu. We assess individual variability by measuring how much the data
are scattered about the fitted line and use this to give an indirect answer to the
question of the reliability of our estimates of the parameters of the line, the
and B. When there are n data values, the calculation of the confidence interval
involves the ¢, _, distribution. The subscript n — 2 relates to the fact that with
two data values there is no measure of variability about a straight line: A straight
line can be drawn to fit exactly to any two points. With three data values there
is in effect one measure of variability about the fitted line, and with n data
values there are in effect n — 2 measures of variability.

Asking if y for Madagascans could be the same as the average American
height involves hypothesis testing and the use of the ¢, , distribution. In the
same way, the question “Is § = 0?” is answered by hypothesis testing and the
use of the ¢, _, distribution (recall that 3 = O implies the dependent variable is
not affected by the values of the independent variable, as can be seen from the
equation y, = a + Bx, + ¢,).

As previously, the answers we can get are not quite the answers to the ques-
tions we really want to ask. The hypothesis test on the question, “Is § = 0?7
gives a p value. This p value actually answers the question, “If the true value
of B in the population were 0, how often would it happen that chance alone
would lead to an estimated value of B from a sample at least as big as the
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tound here?” We judge this chance by the variability in the data about the best
straight-line fit and by the number of data points. As always, we need to use
common sense, since we are not directly answering the primary question, “Is
B = 07" but instead obtaining an answer to a secondary, indirectly related
question in the form of a p value.

If in our height and weight example we had a small sample, or a sample that
just happened to contain a few very skinny giants and a few very fat dwarves,
or a sample in which there was an unusual amount of variation in weight even
after allowing for height differences, our test of the hypothesis 3 =0 could give us
a large p value, even as large as 1. The hypothesis test would be telling us that if 3
were 0, chance alone could easily explain any tendency seen in the sample for
weight to increase with height. Of course, this does not mean that we should
now believe that on average weight does not increase with height. Just be-
cause chance could “easily” explain any tendency for weight to increase with
height does not mean that we should believe that chance is the explanation. To
do so would defy common sense and the work of all those who have produced
tables or graphs of average weights tor people of various heights.

On the other hand, if H, is almost certainly true and H, is almost certainly
false, we should require an extraordinarily low p value before we start to be-
lieve that there is an association between the two variables. One study gave a
p value of 0.000001 when a regression line was fitted to data over many years
where one of the variables was the number of graduating Anglican ministers
of religion and the other variable was the level of imports of Jamaican rum in
the same year. Of course, common sense suggests that the explanation is likely
to be that this is an instance where a 0.000001 chance actually occurred and if
we were to continue observing these variables in future years we would find
no relationship. My benchmark p value for believing that there was anything
other than a chance association in the years observed would be smaller than
0.000001. However, this example also illustrates a further important point. If
there was a real association it would almost certainly not be a result of Angli-
can ministers importing large amounts of Jamaican rum for their graduation
parties, and it would almost certainly not be that the consumption of Jamaican
rum induced Anglicans to take up a religious vocation, but it could conceiv-
ably be that the socioeconomic circumstances that somehow affect the num-
ber of graduating Anglican ministers also somehow atfect the importation of
Jamaican rum. Perhaps this possible connection is not so far-fetched. General
economic circumstances could well affect both religious participation and
importation of alcohol. In view of this, perhaps my suggestion about the bench-
mark p value is too extreme and we should allow the data to convince us of an
association somewhat more easily. The important point here is that if it is
decided that an association between two variables is too convincing to be put
down to chance, then as explained in Chapter 7 on causality, the association
may be because A=B, B=A, or C=both A and B.
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Complications That Do Not Have
an Analogy to the Single Variable Case

Violation of Assumptions

All the calculations in regression are only valid if the model y,= a + Bx, + ¢,
is correct and the e, values are normal and identically and independently dis-
tributed about zero. Since this model dealing with two variables measured on
each individual is more complicated than the model u + ¢, for a single mea-
surement on each individual, there is more chance that the model is not rea-
sonably accurate and so there is more chance that the calculation of the best
estimates of a and 3 and their confidence intervals are not accurate. For a
start, we can have all the violations of the assumptions that can occur with the
model it + e,. In addition, the relationship between the average value of y and
x, which is assumed to be a straight line, may in fact be a curve that differs
appreciably from a straight line. The ¢, values may also not be identically
distributed. In fact, it is common for the size of ¢, to depend on the size of x,. In
terms of kilograms, there is more variation in the weight of adult humans than
in the weight of baby humans. Newborn humans vary from the tiniest prema-
ture babies that weigh less than 1 kg to exceedingly plump babies up to 5 kg or
so. The mean, give or take 2 kg, covers the vast majority of newborns. On the
other hand, only a relatively small minority of adults are within just 2 kg of
average weight. This type of situation, in which the amount of variability in
the dependent variable depends on the value of the independent variable, is
said to be heteroscedastic.

If we are not dealing with a straight-line relationship or we are dealing with
a heteroscedastic situation, then our calculations will not be valid. Inspection
of graphs of our data and further analysis of the estimated ¢, values obtained
after fitting our straight line can indicate that the assumptions on which our
calculations are based are unreasonable. We will consider only a few pitfalls
that can be revealed by inspection of the graph.

Consider the four graphs in Figure 9.3. The data in all four graphs consist of
the same number of points and give rise to the same regression line with the
same confidence intervals for the parameters of the line. The top left graph
portrays the ideal situation, with points scattered at random about a sloping
line. The top right graph displays data points that fit perfectly to a parabolic
arc. The bottom left graph displays data points, where all the points but one fit
perfectly to a straight line that is not the regression line. The bottom right
graph displays data in which all points but one have identical x values. Clearly,
regression should only be used for the first graph. It is only for this graph that
it is reasonable to believe that there is a general tendency for a straight-line fit
but that individual points have random amounts of deviation about the straight-
line fit. The assumptions underlying the calculation of the best straight-line fit
do not seem reasonable in the case of the other three graphs. Instead, it is more
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Figure 9.3
Graphs ustrating Violations of Regression Assumptions
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reasonable to believe that for the second graph we are dealing with an exact
parabolic relationship, not an approximate relationship to a straight line. For
the third graph it is more reasonable to believe that the anomalous point is an
error, since the data otherwise fit exactly to a straight line. In the case of the
fourth graph there is not enough information to give any check for the as-
sumption that the variability of a point does not depend on its x value.

Procedure if Assumptions Are Violated

If examination of the graph of the data with the fitted straight line indicates
that the assumptions are not valid but inspection does not suggest an obvious
alternative such as a parabolic fit, we have two choices. First, we can use a
nonparametric test for assessing the strength of the association between the
values x; and y,. The most commonly used nonparametric test is known as
Spearman’s rho. It will be described later. The other option is to make arbi-
trary transformations of the x; or v, or both and repeat the regression calcula-
tions and graphing until it appears that with some transformation there is no



214 Statistics with Common Sense

evidence that the assumptions are violated. In other words, it may be possible
to distort the x or y values or both in some way (e.g., by taking logs, squares,
square roots, or whatever) so that a nonlinear relationship will “look like™ a
straight-line relationship and the estimated errors “look like” they are cor-
rectly behaved. If so, a straight-line fit to the transformed values of x and y can
be calculated. This approach may seem rather contrived and one may be dubi-
ous about its validity. Nevertheless, it is quite commonly used.

Dependence of Estimates and Confidence Intervals for o and B

One problem with confidence intervals in regression is that the confidence
intervals for a and B are not independent of each other. The value of « tells us
how far up the vertical axis to start drawing the line (it is the value of y when
xis 0). The value of B tells us the slope of the line. If in the weight versus
height graph we thought that a value of « in the upper part of the confidence
interval was more appropriate, the data would then suggest that the upward
slope, the value of {3, ought to be in the lower part of the confidence interval;
if the line started higher up it would have to have a reduced slope to be a
reasonable fit to the data. In particular, say we had confidence intervals for the
estimate « =-25.48 and B =0.52 in the equation w=-25.48 + 0.52 x h. Let us
also say we looked at this equation and decided that it didn’t make sense with
a = -25.48: A zero-height person ought to have zero weight, not negative
weight. Particularly if O was in some reasonable confidence interval for « we
might want to rewrite the equation as w = (.52 x h. Because the estimates and
confidence intervals for « and B are not independent of each other, we would
have to recalculate (3 and its confidence interval on the condition that a = 0. It
turns out that the best fitting line of the form w =3 x i is w = 0.37 h. This is
illustrated in Figure 9.4.

Figure 9.4
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Figure 9.4 displays the same weight versus height data shown in Figure 9.1.
Also displayed as a solid line is the previously calculated regression line

w=-2548 +0.521 x h.

However, the axes have been rescaled to show zero. The dashed line is a new
regression line calculated on the basis that a person of zero height has zero
weight. It can be seen that moving the start of the regression line up the verti-
cal axis by 25.48 units necessitates a decrease in the slope in order for the new
line to give a reasonable fit to the data. This illustrates the fact that the esti-
mates of a and 8 in the equation of the regression line w = a + 3 X h, are not
independent. Reassessment of one requires reassessment of the other.

Asymmetry between the Role of Independent and
Dependent Variables and the Regression Effect

One problem with regression arises because the two variables are not treated
equally. One of the two variables is taken to be the independent variable and
the distance of the dependent variable from the fitted straight line is measured
in terms of the vertical distance to the straight line. This definition is chosen
because it is appropriate if we want to find the average value of the dependent
variable that relates to one particular measure of the independent variable. We
are then looking at all possible values of the dependent variable that have that
particular value for the independent variable: The x value is fixed and we are
considering all possible y values for that x value: that is, we are moving verti-
cally, varying the y with the x fixed. However, this use of the vertical distance
(as opposed, for example, to the use of a horizontal distance) introduces an
asymmetry. This asymmetry can cause a number of problems.

For example, the regression formula fitted to the data displayed in Figures
0.1 and 9.4 has the formula for the relationship between average weight and
height as w = -25.48 + 0.52 x h. This formula tells us that the average weight
of those exceedingly tall and rare individuals who have a height of 210 cm is
about 84 kg. However, the converse is not true. The formula that relates aver-
age weight to a particular height cannot simply be put into reverse to give the
average height for a particular weight. The average height of people who have
a weight of 84 kg is not 210 cm: Overly wide normal-height people are much
more common than properly proportioned exceedingly tall people. The aver-
age height of 84 kg people will be somewhat taller than average, but will be
nowhere near 210 cm. These ideas lead to the regression effect.

Figure 9.5 may assist in understanding the problem. The concentric ellipses
represent the density of points in a huge sample of people who have heights
(h) and weights (w) measured. The more central the ellipse, the greater the
density of sample points within it. The line marked “regression of w on h™ is
the line giving average weights of people of various heights. The vertical dashed
line that almost touches the second-most outer contour shows that for the par-
ticular height 196 cm the numbers whose weights differ from the average for
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Figure 9.5
The Regression Effect
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196 cm people fall off equally as we move away from the regression line in
either direction. This is shown by the fact that it is the same distance to the
outermost contour whether we go up in weight or down in weight. The line
marked “regression of h on w” is the line giving average heights of people of
various weights. The horizontal dashed line that just touches the second-most
outer contour shows that for the particular weight 86 kg the numbers whose
heights differ from the average for 86 kg people fall off equally as we move
away from the regression line in either direction. This is shown by the fact that
it is the same distance to the outermost contour whether we increase (go right)
in height or decrease (go left) in height.

The regression effect is a consequence of the asymmetry between depen-
dent and independent variables in regression calculations. For example, it was
first noted in the nineteenth century that the sons of very tall fathers were on
average only moderately tall. This phenomenon was referred to as “regression
towards mediocrity,” hence the name “regression” for this general area of sta-
tistics. A visual explanation can be obtained from Figure 9.5 by mentally rela-
belling and rescaling the axes. The horizontal axis could be labelled “height of
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the fathers” and the vertical axis could be labelled “height of the sons.” Both
axes would have the same scale. The graph would then show that the average
son of a very tall father tended to be smaller than the father, though there
would be just as many very tall sons as there were very tall fathers. The verbal
explanation is as follows: Assume that both genes and environment or genes
and “luck” together determine height. Very tall fathers are mostly the result of
“ordinarily tall” genes combined with tuck (“very tall” genes are very rare,
much rarer than the combination of ordinarily tall genes and luck). The very
tall fathers pass on their mostly ordinarily tall genes to their sons. On average,
the sons have average luck so end up merely tall rather than very tall. Put more
simply, the association between the heights of father and son is not perfect:
The father’s height is only part of the explanation of the son’s height; the other
part of the explanation is chance.

OPTIONAL

As another example, say a casino puts on a new game. For a fee of just over
$50, gamblers get to toss 100 coins. They get a return in dollars equal to the
number of “heads” they throw. A number of gamblers who have tried the game
once are concerned because they received an unusually low number of heads and
hence dollars. Somehow a rumor starts that drinking orange juice will improve
their luck. Amazingly enough, after drinking orange juice they all find that on
trying the game again their scores have improved. Their results are listed here:

Gambler a b ¢ d e f g h i k
Heads before orange juice 39 37 35 39 38 39 36 34 39 37
Heads after orange juice 54 43 49 52 51 48 50 56 45 5l

Soon afterward, a number of gamblers who did very well on their first round
of the game come back to the gaming table. They are very concerned to learn that
the casino regards them as too lucky with heads to play the game in its current
form. Instead, they will be given in dollars the number of “tails” that they throw.
Again, somehow a rumor starts that drinking tomato juice will improve their luck
by decreasing their heads score, conversely increasing their tails score. Amazingly
enough, after tomato juice they all find that on trying the game again their
heads scores have decreased as desired. Their results are listed here:

Gambler Il m n p q r s t u v
Heads before tomato juice 67 61 62 65 61 63 61 62 064 57
Heads after tomato juice 49 47 53 52 55 46 48 54 49 50

A statistics student who witnesses all this is astounded by these results. He
performs a sign test and a Wilcoxon signed rank test on both tables. All four
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tests give a p value of 0.00195. Furthermore, a ¢ test on the first table gives a p
value of 0.0000143 and a ¢ test on the second table gives an even more con-
vincing result of 0.00000898. The statistics student believes that, despite his
prior expectations, there is now good evidence that there is a connection be-
tween beverage drunk and coin-tossing scores. The question is, Should the
statistics student pass his statistics course?

Unfortunately, the answer is that both the statistics student and the gam-
blers have been misled by the regression effect. The regression effect here
concerns the possible relationship between a person’s initial coin-tossing score
and their postdrinking coin-tossing score. Common sense dictates that there is
no relationship between coin-tossing results and beverage drunk. This, then,
is the regression effect seen here in its purest form. It is the regression effect
when in fact there is no relationship between the two variables: the number of
heads in the first toss of 100 coins and the number of heads in the second toss
of 100 coins. Those who score fewer heads than average in the first toss of 100
will tend to perform about average on the second. Those who score more
heads than average in the first toss of 100 will also tend to perform about
average on the second.

END OPTIONAL

Correlation

We know that 3, the slope of the regression line, is a method of measuring
the strength of the association between the x values and corresponding y val-
ues. However, it seems desirable to have another measure that avoids the asym-
metry between the variables inherent in fitting the regression line.

A statistical measure that avoids making an arbitrary distinction between
the independent and dependent variable is known as the “sample correlation
coefficient” (or Pearson’s correlation coefficient). The sample correlation co-
efficient is usually denoted r and the equivalent true value for the population is
denoted p (Greek letter rho), just as the sample standard deviation is denoted s
and it estimates the true population standard deviation, denoted . The corre-
lation coefficient (sample or population, r or p) takes values between —1 and
+1. The further the correlation coefficient is from 0, the stronger the associa-
tion between the two variables. A correlation coefficient close to +1 means
that higher values of x, are almost always associated with higher values of y. A
correlation coefficient close to —1 means that higher values of x, are almost
always associated with lower values of y,. A correlation coefficient of zero
means that knowing the x value gives us no information about the correspond-
ing y value.

Complicated formulas and mathematical instructions have been avoided in
this book unless they give particular insight. The formula for the sample cor-
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relation coefticient is not too frightening and is perhaps a little bit enlighten-
ing and so is included for those who are interested. It is

The average of all terms of the form (x, — X)(y. - ¥)

std dev of x X std dev of ¥

or, more precisely,

] n
X=Xy, =¥
,1_1;( ), - F)

std dev of x x std dev of y

If an above-average x value is likely to have its accompanying y value also
above average, we see the term (x; - X)(y, — V) is likely to be positive. 1f a
below-average x value is likely to have its accompanying y value also below
average, we see the term (x; — x)(v, — y) 1s also likely to be positive because a
negative times a negative is a positive. The denominator standardizes things
so that the maximum value of the sum of these terms is 1. Hence, we see that
a strong tendency for the y value to be large (small) when the x value is large
{small) gives a correlation coefficient close to I. If knowing the x value had no
bearing on the associated y value, the terms that are averaged are equally likely
to be positive or negative and so we would obtain a sample correlation coefti-
cient close to 0.

For example, since greater than average height tends to be associated with
greater than average weight and, conversely, lower than average height tends
to be associated with lower than average weight, height and weight are posi-
tively correlated: The correlation coefficient will be above 0. The coetficient
would be 1 exactly if being a certain amount taller than average always meant
being a proportionate amount heavier than average so that the relationship
between height and weight was given exactly by the equation w =« + 3 x A,
the equation for a straight-line relationship. Of course, weight and height are
not related exactly in this way; there is some additional random scatter so that
people of the same height may have different weights. As a result, the correla-
tion coefficient for the association between height and weight is less than 1.
An example of variables that are likely to be negatively correlated are number
of hours of TV watched per week and exam marks. More television will often
mean less time for study and this will tend to result in lower exam marks.

It should be noted that both the slope of the regression line and the correla-
tion coefficient are valid measures of the strength of an association only on the
assumption that the association of interest is in the form of a scattering about
a straight line on a graph of the two variables: The variables are associated
linearly. If for some unknown reason we plotted the horizontal and vertical
position of a playground swing at random times, then the data we obtained
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would have a correlation coefficient close to zero. The plotted data would
consist of points on a circular arc. There would be no tendency for high verti-
cal values to be associated with large positive horizontal values, for high ver-
tical values are just as likely to be associated with large negative horizontal
values. There is a strong, almost perfect association between vertical and hori-
zontal position—knowing the vertical position tells us that the horizontal po-
sition must be one of two possibilities—but this association is not linear.

The correlation coefficient r has a number of advantages compared to 3,
the slope of the regression line, as a measure of the association between two
measurements such as height and weight. As already stated, the correlation
coefficient is not affected by any arbitrary choice of one variable to be an
independent variable and the other to be a dependent variable; the method of
calculating the correlation coefficient treats both variables equally. Another
disadvantage of 3 compared to r is that the value of 8 is affected by the units
of measurement. If we measure height in meters, the slope of the line relating
weight to height is 100 times steeper than if we measure height in centimeters.
However, the strength of the association between height and weight is obvi-
ously not affected by our choice of measurement units. Reflecting this, the
correlation coefficient is not affected by the choice of units. A third advantage
for the correlation coefficient, or at least the square of its value, is thatit has a
nice physical interpretation: The square of the correlation coefficient is a mea-
sure of the proportion of the variability of the y values (as measured by vari-
ance) that is explained by the variation in the x values. On the other hand, the
correlation coefficient has a disadvantage. Unlike 3, it does not immediately
slot into a formula for predicting the average value of y given a particular
value of x. Both B and r are useful as measures of association between pairs of
variables and each has its particular advantages.

If the slope of the regression line is zero (i.e., § = 0), it indicates that there
is no linear relationship between x values and y values. As a possible relation-
ship between the x values and y values is often a question of interest, there is
theory to test the hypothesis that 3 = 0 (and to obtain confidence limits for B).
Similarly, there is a test of the hypothesis that the correlation coefficient ris 0
(and confidence intervals can also be obtained). The tests on 3 and r are equiva-
lent to each other in helping to decide whether an apparent association be-
tween two variables is “for real” or just due to chance. Both tests are valid
only if we have the situation where there is a certain type of randomness. In
particular, it is assumed there is an underlying straight-line relationship (the
nufl hypothesis is that this straight line is horizontal), and for all points the
vertical variability about this straight line is given by figures obtained inde-
pendently from identical normal distributions.

There is a further use in statistics for the correlation coefficient r in describ-
ing the population of pairs of values on the basis of the scatter of a sample of
pairs of values. This use requires more assumptions about the data and the
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underlying population. The term “bivariate normality” is used here, but fur-
ther discussion is beyond the scope of this book.

The sample correlation coefficient (or Pearson’s correlation coefficient) is
defined by a formula on page 218 using the actual values of x; and y,. There is
also a nonparametric correlation coefficient that is given the name Spearman’s
p. It is calculated by replacing the values of the x; and y, by their ranks. For
example, if the ith person was 176 cm tall and weighed 75 kg and this person
was ranked the thirtieth tallest and the nineteenth heaviest in the sample, then
in place of x, = 176 and y, = 75 we would use the values 30 for x; and 19 for y,.
By throwing away the exact value and only using the ranks, we are losing
some information. However, hypothesis tests about the correlation coefficient
depend on the assumption of an underlying normal distribution. If this as-
sumption is not reasonable, we can use hypothesis tests on Spearman’s rho.

The Principles of Hypothesis Testing
Applied to Spearman’s Rho

In some cases p value calculations using Spearman’s rho are a good reminder
of the principles underlying such calculations. One example of calculating a p
value associated with Spearman’s rho was given in the section on the number of
possible arrangements of n objects on pages 56 and 57. We now give another
example and use it to revise much of the earlier material in this book.

OPTIONAL

Say we wished to test the null hypothesis that there is no relationship between
a person’s athletic ability and his or her ability in statistics against the alterna-
tive hypothesis that the skills are positively correlated. Let us suppose that we
gave four people tests in both athletics and in statistics and the result was that
they have the same ordering in both areas (i.e., the person who came first in
athletics also came first in statistics, and so on). We do not have to calculate
Spearman’s rho here using a formula: It must have the value 1, signifying
perfect agreement in the ranking of abilities in the two areas. To determine the
p value, we now ask, “How often would we obtain this perfect agreement by
pure chance?” To answer this question, let us assign the letters A, B, C, and D
to the people who came first, second, third, and fourth in athletics, respec-
tively. We now ask, “What is the probability that the performance in the statis-
tics test will also be in the order A, B, C, D?” We have four choices for the first
position in statistics and for each of these four choices we then have three
choices for the second position, and for each of these 4 x 3 combinations of
choices for the first two positions we have two choices for the third position
and just one for the fourth, so we have 4 x 3 x 2 x | =4! =24 combinations of
choices. Under the null hypothesis there is no relationship between statistical
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ability and athletic ability, so all combinations of choices are equally likely.
Therefore, the probability agreement in rankings at least as good as the agree-
ment seen here—perfect agreement—is '/». If (and it is a big “if”) we be-
lieved that in this case it was appropriate to use the traditional benchmark p
value of 0.05 or '/, we would now prefer the alternative hypothesis that there
is a positive association between abilities in athletics and statistics.

We should now write a paper for a learned journal reporting these findings
and when the paper is published we should perhaps put out a press release
telling the world at large that we have found reasonably convincing evidence
that ability in statistics and athletics are positively correlated. Readers here
may object on the grounds that our conclusion is based on results from just 4
people. This is not a valid objection, provided the 4 people were chosen ran-
domly. Our conclusions here are just as valid as if we had 4,000 people and
found that this large sample led to a positive correlation that under the null
hypothesis gave a p value of /. The convincing evidence is not the numbers
involved in the study. The convincing evidence is that it is not easy for chance
alone to explain the positive correlation and we have decided that relying on a
'/2¢ chance (or any chance less than 0.05) as an explanation for our results is
less satisfactory than believing that there is a real correlation. The difference
between a study of 4 people and a study of 4,000 people is that in the 4,000-
people study a p value of /24 will result from a much weaker association be-
tween abilities in athletics and statistics. Those readers who still object to the
conclusions based on just 4 people should understand that the only logical
source of objection is that they intuitively don’t regard a p value of '/ as
providing reasonably convincing evidence. In other words, such objectors
should logically use a benchmark p value much smaller than the conventional
0.05. This may well be reasonable given that the alternative hypothesis may
not be easy to accept. However, all should understand that this 0.05 is the
benchmark that is widely used as the criterion for making decisions about
hypotheses in many areas of human knowledge. Clearly, it is inappropriate to
use this benchmark without considering the plausibility of the hypotheses and
the costs of error.

If, however, instead of the one-tail alternative hypothesis that abilities are
positively correlated we had the two-tail alternative hypothesis that abilities
are correlated either positively or negatively, we would not reject the null hy-
pothesis using the benchmark p value of 0.05. This is because both the rank-
ing we obtained—A, B, C, D-—and another ranking—D, C, B, A—lead to a
Spearman’s rho equally far from the null hypothesis ideal Spearman’s rho of
0. In other words, two of the twenty-four equally likely rankings (including
the one we actually obtained) are at least as far as our ranking from the ideal
under the null hypothesis. Therefore, if the null hypothesis is true and pure
chance alone is operating, the probability of being this far away in the rankings
from the ideal situation of Spearman’s rho = 0 in this two-tail test is %2 or 2.
Since Y12 is greater than 0.05 or '/, we will not think that we are holding onto
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the null hypothesis in the face of an unreasonably small chance. We see that
using four people, a two-tailed test, a benchmark p value of 0.05, and
Spearman’s rho as our test of association, it will never be possible to reject the
null hypothesis. If, in fact, the null hypothesis is incorrect, we will inevitably
make a Type Il error. Using the term “power” as defined in Chapter 6, we can
say that this experiment has no power.

END OPTIONAL

The ideas used to calculate p values for the null hypothesis Spearman’s p=0
in this example can in principle easily be extended. If » individuals each have
two variables measured on them, simply calculate the Spearman’s p for the
measure of the extent to which the rankings match. Then write down alln x (n— 1)
x(n-2)x(n-3)x...x3x2x1=n! possibilities for how the rankings
could match. For each of these possibilities calculate Spearman’s p. Under the
null hypothesis each of these possibilities is equally likely: Each occurs '/, of
the time. For the p value, simply count up the number that give a Spearman’s
p at least as big as the one obtained from the sample and divide by n!. This is
the p value: It answers the question, “How easy is it for chance alone to ex-
plain results that are at least as extreme as the results in our sample?” In prac-
tice, this approach is too tedious even for a computer unless » is a small number.
Unless #n is small, some clever theory based on the central limit theorem and
the normal distribution is used to calculate an approximate p value for various
values of Spearman’s p.

SUMMARY

* ANOVA is used to see if there is convincing evidence that the numbers in different
groups come “from different hats.” ANOVA actually starts by assuming that the
numbers in all groups all come “from the same hat.” It then tells us how often the
means of the different groups chosen from the same hat would be at least as widely
scattered as they are with our data. This can be calculated from the observed vari-
ability of the individuals within each of the groups. This is the p value. ANOVA
assumes that we are dealing with a situation in which numbers in all the different
hats are normally distributed with the same variance. If these assumptions are vio-
lated, use the Kruskal-Wallis test.

» Regression is used to assess any straight-line relationships or association between
two variables measured on each of a number of individuals. If the slope of the
straight line, (3, is zero, then the independent variable has no effect on the depen-
dent variable. There is a test to see if 3 calculated from a sample provides reason-
ably convincing evidence that the true 3 for the population is not zero. The evidence
is provided in the form of a p value (this test indicates that there is an association
between the variables in the population). Confidence intervals can be obtained for
the true 3 for the population. Certain assumptions must be met for this test to be
valid. Deciding that an association is real still leaves open the issue of causality, as
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in Chapter 7. The asymmetry between independent variables and dependent vari-
ables causes a difficulty known as the regression effect that reflects the fact that one
variable only partly explains the other variable and chance is also involved.

« Correlation also measures the amount of linear association. Correlation, unlike the
slope of the regression line, is not affected by units of measurement and does not
distinguish between dependent and independent variables. However, it is not as
convenient as $3 in obtaining a formula relating two variables. It takes values be-
tween —1 and +1, with 0 indicating no linear association. As in the case of 3, the
sample correlation coefficient can be used for an hypothesis test that the population
correlation coefficient is zero and to obtain confidence intervals. There is a non-
parametric version of the sample correlation coefficient known as Spearman’s p.
The method of finding p values testing the hypothesis that Spearman’s p = 0 in-
volves very simple mathematical ideas.

In short, use ANOVA to see if there is reasonably convincing evidence that
a number of different groups have different means. Use regression or correla-
tion to see if there is reasonably convincing evidence that a larger than average
value for one variable is associated with a larger (or smaller) than average
value for another variable measured on the same individual. Use regression if
the aim is a formula connecting the two variables. Use correlation if a formula
is not the aim and a measure of the closeness of the association in terms of a
number between —1 and +1 is required.

QUESTIONS

1. The day of the week on which a number of statistics students were born was recorded
along with their marks for a statistics course. The results are displayed here:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

58 6 21 71 39 62 81
97 19 58 86 58 31 94
43 55 23 51 26 37 65

Perform an appropriate statistical test and state with reasons whether you believe
that there is a relationship between the day of birth and performance in statistics.

2. A skeptical farmer wonders whether there is really any benefit in terms of yield in
the various high-yield varieties of wheat produced by agricultural researchers.
Accordingly, he keeps a record over the years of the yield with various varieties.
His results are as follows:

Traditional variety 2.7 1.9 3.6
Improved variety type 1 23 3.1 4.0
Improved variety type 2 4.4 2.7 35

The farmer uses a statistical package to analyze these results using ANOVA and
concludes that there is no evidence that the improved varieties are better. Do you
agree with the farmer? Discuss.



Statistics on More Than Two Groups 225

3. Inastudy of geographical temperature variation, research assistants in Townsville
(latitude 19°307), Brisbane (latitude 27°307), Sydney (latitude 34°007), and
Melbourne (latitude 37°457) were each asked to choose, at random, two days in
May and record the maximum temperatures on those days. The results are as
follows:

Townsville 27 31
Brisbane 24 18
Sydney 16 22
Melbourne 13 21

Perform an ANOVA test on these data. Comment on the null hypothesis and the
test used. In light of these results, is it reasonable to believe that the maximum
daytime temperatures in May in these various cities are the same?

4. The following list gives the rainfall in centimeters in Brisbane, Australia, in April
of each year and the number of books imported into the United States in Decem-
ber of the same year. Data from the years 1995 to 2000 are given. Use an appro-
priate statistical method to test the null hypothesis that there is no relationship
between Brisbane rainfall and U.S. book imports. Do you believe that knowing
Brisbane’s rainfall in April this year will assist you in predicting the book imports
in the United States in December? Discuss.

Year 1995 1996 1997 1998 1999 2000
Rainfall  10.1 3.9 15.7 9.1 6.3 12.9
Books 150,060 90,210 197,300 137,980 121,100 181,600

5. Inthe following list the row marked x gives the prices paid by the previous owners
to purchase houses in a particular town in 1990; the row marked v gives the price
paid by the current owners to purchase the same houses in 2000.

X 33 37 38 39 41 36
v 67 73 74 75 97 84

Comment on the null hypothesis H, that there is no relationship between the pur-
chase price paid by the current owner and the purchase price paid by the previous
owner and use the results given to complete an appropriate statistical test of the
null hypothesis. Do you believe that knowledge of the previous purchase price of
a house will be of no use in predicting the current purchase price? Discuss.

6. Six people are questioned by a researcher and are ranked according to the amount
of daily exercise that they undertake. The same six people also have a blood cho-
lesterol test. It turns out that the person who undertakes the most exercise also has
the lowest cholesterol level. The person who undertakes the second greatest amount
of exercise also has the second lowest cholesterol level, and so on, so that the
person with the least exercise has the highest cholesterol. Say this experiment
was repeated many times. Find how often on average this inverse matching of
rankings of cholesterol level and exercise would occur if in fact there were no
connections between cholesterol and exercise. If the experiment is in fact carried
out only once and gives the results described, would you be reasonably convinced
that there is an inverse association between exercise and cholesterol levels?
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7. A researcher looking for evidence of climate change notes the ten localities in

America with the highest rainfall totals for the twenty-four hours ending at mid-
night, January 2-3, 2001. The following year he checks the rainfall in the same
ten localities over the same twenty-four-hour period. He finds that in all cases the
rainfall in these localities on January 2, 2002, is less than it was on January 2,
2001. The researcher argues that even a simple sign test of these results gives ap
value of 1/1,024 (one-tail), providing strong evidence against the null hypothesis
that America’s rainfall is not changing. Discuss any flaws that you may see in this
researcher’s experiment and conclusion.

8. The rabbit populations of 100 fields were estimated and the 9 fields with the high-

1.

est estimated rabbit populations were selected for a rabbit inhibition experiment.
The inhibition experiment consisted of erecting gruesome pictures in the middle
of each field portraying farmers killing rabbits. After three years these nine fields
were revisited and rabbit numbers were again assessed. In all nine cases the rab-
bit population had fallen. Assuming the experimental method is valid, perform an
appropriate test to determine the probability of an improvement in nine out of
nine cases being achieved if in fact the gruesome pictures had no effect on the
rabbits. Are you reasonably convinced that gruesome pictures inhibit the rabbit
population? What major flaws are there in the experimental method here?

NOTE

An fratio of 1.0 corresponds to the ideal situation, when the null hypothesis is

true, of both estimates of individual variability being equal. It may therefore be thought
that the fratio will exceed 1.0 exactly half the time; that is, the associated p value
should be 0.50. However, asymmetry in the f distribution means that there is a less
than 50 percent chance of exceeding the value of 1.0.
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Miscellaneous Topics

FINITE POPULATION CORRECTION

Often in statistics we are dealing with a population that is effectively infinite
and we want to learn about the population by taking a sample comprising a
limited number of values drawn from this virtually infinite population. For
example, if we want to learn something about the effect of a disease and we
examine some people with the disease, we are generally sampling an almost
infinitesimal proportion of the population of all those people who now have or
might ever have the disease. If we want to learn something about the pollution
levels in a town’s air over time, the amount of air we sample would be an
almost infinitesimal proportion of the air that circulates over the town during a
period of time. The sample is useful, not directly because it gives us knowl-
edge about some appreciable fraction of the population, but because it gives
us probabilistic ideas about the entire population.

Sometimes, however, we will deal with a population that is not particularly
large in comparison to the size of our sample. For example, we might be inter-
ested in environmental attitudes of the mayors of all the local authorities in
Australia. The question then arises, Why not do a complete census? With a
complete census there is no need for statistics in the sense that there is no
uncertainty: Confidence intervals and hypothesis tests regarding the true lev-
els of environmental awareness, should all the mayors be questioned, are ir-
relevant, as they all have been questioned.

Sometimes we will do a complete census, but often we won'’t, for two rea-
sons. The first reason is that it may be too expensive. The second reason is that
with limited resources we may get more accuracy by concentrating our re-
sources on a sample rather than spreading them out over the whole popula-
tion. Returning to the example of the environmental attitudes of the mayors, if
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we were to conduct a census of all of them, our resources might limit us to a
postal survey that might then be filled out in haste by the mayors’ aides. If,
however, we were to concentrate our resources on a sample, we might be able
to get much more thoughtful responses from all the mayors in the sample
using face-to-face interviews.,

However, if our sample consists of an appreciable proportion of the entire
population, our statistical analysis has to be modified. The modification re-
flects the fact that our sample not only gives us a probabilistic idea of what we
would expect from the rest of the population, but it also gives us precise infor-
mation about an appreciable proportion of the whole population. Mathemati-
cal theory we will not cover shows that the appropriate modification is quite
straightforward. Our ideas on how uncertain our estimate of the population
mean is—the standard error of the mean—have to be reduced by multiplying
the standard error of the mean by \“l — f, where f is the proportion of the
population in the sample. This adjustment is known as the finite population
correction. The statistical analysis then proceeds as usual. If we are using a
computer program in our analysis, the program may display the standard error
of the mean so that we can factor in a finite population correction manually, if
appropriate. For example, say we sampled a random sample of ten of the may-
ors of Australia’s twenty largest cities and found the following results on some
numerical environmental awareness scale: 5, 6,9, 4, 8, 10,7, 3, 1, 2. We will
assume here that it reasonable to analyze these figures as though they came
from a normal distribution and so use the methods described in Chapter 5. The
mean score is 5.5. The sample standard deviation is 3.027. The standard error
of the mean without using the finite population correction is 3.027/ /10 =0.957,
but with the finite population correction it is 0.957 x /1 = /2 = 0.677. If we
wanted 95 percent confidence intervals for the true mean of the scores of the
mayors on this environmental awareness scale, it would be 5.5 £ 0.677 x
2.262 where +2.262 is the range of values from the ¢, distribution that contains
95 percent of values. In other words, the 95 percent confidence interval would
be (4.0, 7.0). If we had not used the finite population correction we would
have (3.3, 7.7). The latter calculation would ignore the fact that not only do we
have an impression of what all the mayors are like from interviewing ten of
them, but we also have certain knowledge about what half of them are like. In
general, the (100 — o) percent confidence interval for the mean as a result of a
survey trom a finite population is given by

where n is the number surveyed, f is the proportion of the finite population
surveyed, and T is the figure from the ¢, _, distribution such that (100 — a)

n—1

percent of the values from this distribution are in the range —7 to +7 (it is
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assumed here that the values that occur in this finite population are values that
are chosen from a normal distribution).

Sometimes there is a philosophical difficulty here. If we want to know about
the actual mayors of large Australian cities, we would use the finite popula-
tion correction factor as in the preceding paragraph. However, if we were
thinking of these mayors as a representative sample of all the mayors who
could ever exist given the same social circumstances as exist in Australia, we
would regard our population as infinite and not use the population correction
factor. In the same way, if we have a statistics class with male and female
students, we may find that the average mark of the females on the examination
is 1 percent better than the average mark of the males. We could then ask the
question, “Is this due to chance?” From one point of view, this is a meaning-
less question. Our sample is the population. We know precisely the mark of
everyone in the class. Knowing these marks, there is no chance that these
results for the population, the class, could be anything other than the results
that we have in front of us. We can say, dogmatically, that in this class we are
absolutely sure that, on these marks, women are better on average than men.
From another point of view, we can think of this class as just a sample of all
the billions of men and women who could potentially enroll in a class such as
ours. Assuming the class is not large and that there is considerable individual
variation in marks and noting the small difference in the average mark, after a
statistical analysis we could conclude, “There is no (convincing) evidence
that women are better than men.”

DETERMINING THE NUMBER OF
SAMPLE VALUES REQUIRED

The amount of data required depends on how accurate we want our esti-
mate to be and how variable the individual values are. We will consider two
cases: estimating a proportion and estimating the mean of values that are nor-
mally distributed.

Estimating a Proportion

Say we wanted to find out the proportion of people intending to vote for a
particular political party. This involves the binomial random variable (Chapter 4).
When the sample is of considerable size (e.g., twenty or more), the binomial
distribution “looks” like a normal distribution, as it is the result of adding a
considerable number of chances (this is the central limit theorem; see Chapter 5).
If the true proportion in the population is 8, then the expected (anticipated
average) number of successes in a sample of size n is n0 and the standard
deviation is [nBd (see Chapter 4 and recall that in the notation used there & =
1 — 0). Then, by the central limit theorem, the actual number of successes in
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the sample will be approximately a value chosen from a normal distribution
centered on n8 and with standard deviation nﬁd) The proportion of successes
in the sample will be '/.th of this, so the proportion of successes in the sample
will be chosen from a normal distribution centered on 6 and with standard
deviation

0

n

. . ¢
{this can be rewritten as [——).
n

Therefore, 95 percent of the time the proportion 6 that will be obtained will be

in the range
{0 - 1.96( /#—) 6+ 1.96( /%ﬂ

We see that if we want a 95 percent chance of being no further than 1 percent
away from the true value of 6, we should take n so that

196(F>—1% 0.01.

Rearranging this equation gives

1.96
" e¢( 0. m)
Now ¢ = 1 -6, and high school algebra shows that the biggest value that 6(1 - 0)
can take is Y (this value occurs when 8 = 12). Approximating 1.96 by 2 and taking
the largest possible value of 8¢ of V4 shows that if we take n =14 x (*/o01)* = 10,000
we will have at least a 95 percent chance of obtaining a proportion that is within 1
percent of the true proportion 6. Public-opinion surveys are often done using n =

500, not 10,000. Calculations using this theory show that these surveys can
have about a I in 20 chance of being inaccurate by more than 4 percent.

The Number of Values Required for Estimation of the Mean
of a Continuous Variable to within a Given Accuracy

The formula for the amount of data required in this situation is worked out
using similar reasoning. This time, however, we have to have some prelimi-
nary estimate of the variability in order to make an estimate of n. We assume
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that we have an estimate s of the standard deviation. The formula, by similar
reasoning to that shown earlier, turns out to be

(u.v)’
n=[—|,
d

where we are prepared to be in error by an amount of d or more with a chance
of a, and u is the value from a ¢ distribution such that the chance of being
above u is “/>. If n turns out to be reasonably large (e.g., greater than 20), the
standard normal distribution usually is used, as it is a good approximation to
the corresponding ¢ distribution. For example, if we had a variable for which
preliminary information indicated that the standard deviation was 10.0 and we
wanted to be 99 percent sure that our estimate of the mean was within 2.0
units of the true value, we would need

oo [257%100Y o
2.0

The figure 2.57 is used here because the range £2.57 from the standard nor-
mal distribution contains 99 percent of values.

Our considerations here can lead to the issues raised in dealing with confi-
dence intervals. If, with s = 10, we are about to examine a sample of 165, then
there will be a 99 percent chance that the mean of the sample will be within
2.0 units of the mean. However, once we have obtained a particular sample
mean we cannot generally say there is a 99 percent chance that the true popu-
lation mean p will lie within 2.0 units of the sample mean. Our 99 percent
confidence interval will, however, be the sample mean +2.0 units. For ex-
ample, if we are dealing with the heights of women, although 99 percent of
samples of 165 women may give sample means in the range 170 to 174 cm, by
a very long coincidence we may have obtained a sample with a mean of 150
cm. We have prior knowledge about the likely average height of women and
so it would not be correct for us to believe on the basis of our sample that there
is a 99 percent chance that the average woman is between 148 and 152 cm.
Ideas about where the sample mean is likely to be knowing the population
mean cannot generally be inverted to ideas about where the population mean
is likely to be knowing a sample mean (see the material on confidence inter-
vals in Chapter 6 for more explanation of this issue).

TOPICS COVERED IN
MORE ADVANCED STATISTICS TEXTS

The topics covered in this text give the reader sufficient knowledge to apply
statistics to most straightforward situations where only one or two measure-
ments are made on each individual. Hopefully, this text, with its emphasis on
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understanding the philosophy, will enable the reader to apply statistics with
common sense in such situations.

However, there are many parts of the subject of statistics that have not been
covered and it seems appropriate in this last chapter to give an indication of
the scope of the subject. This will be given in the form of the following list of
randomly selected topics in random order:

* We have covered the common tests appropriate to certain combinations of sources
of data and types of data as described at the end of Chapter 5 and expanded at the
end of this chapter. However, there are many more tests applicable in circumstances
we haven’t considered. For example, we haven't considered the situation where
there is a measure on each individual performed after each of a number of different
interventions where that number is more than one.

+ Mathematical statistics is a large subject. Among many other things it delves into
questions of being precise about what we mean when we say things like “s as de-
fined in Chapter 2 is a “good” estimate of ¢.”” What are the mathematical properties
of a “good” or “best” method of estimating a parameter value? Are there math-
ematical methods for finding the “best”™ method of estimation?

» Throughout this text the need to incorporate common sense into statistics has been
emphasized. The reader has been urged to do this by modifying their benchmark p
value according to circumstances. There are also mathematical ways of incorporat-
ing common sense into statistics. The subject of Bayesian statistics is one of a
number of mathematical approaches to incorporating common sense into statistics.

* Decision theory is a further attempt to refine the use of statistics. It is a method of
using objective and subjective information about probabilities and explicitly taking
into account the costs of errors.

« The previous section gave some information on calculating how many sample val-
ues would be needed for a certain amount of accuracy in two simple situations.
There is a lot more to the topic of finding the sample numbers necessary for a
statistical analysis to have some required power. A related topic is the topic of strati-
fied sampling. If we wanted an estimate of total amount of soil lost to erosion in Austra-
lia each year, positioning test areas at randomly chosen spots throughout Australia
would not be optimal. To improve accuracy, we would be best off focusing more
sampling effort on geographic regions where erosion levels were more variable.

+ Being as economical as possible in terms of number of subjects in an experiment is
particularly important when the decision about the best treatment is a matter of life
and death. There are special methods known as sequential analysis for continually
checking the data to decide when sufficient people have undergone the experimen-
tal treatment for a decision about it to be made.

« Survival analysis is a related area. In medicine, the final endpoint for many studies
is death. However, as people, even sick ones, often live a very long time, we would
often have to wait a very long time before everybody in a study died and we had
complete results to use in comparing the benefits of different methods of delaying
death. Using incomplete results when only some people have died is the subject of
survival analysis.
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The practicalities of sampling, particularly sampling humans, is another large topic.
For example, phone surveys don’t represent people in households without a phone,
but, less obviously, they underrepresent those in large households with only one
phone per household (see the answer to question 2 of Chapter 2).

Most of this book has dealt with samples in which the individuals have been chosen

at random. In spatial statistics, though, the equivalent to our individuals are points
we choose to sample in space. Points in space are not independent: They are related
according to how physically close they are. Spatial statistics is an important com-
ponent of environmental science and of geology. It is required, for example, in
order to use limited information to draw maps of pollution levels, assess the popu-
lation of endangered species, and assess the amount of ore in a mine.

Just as points can’t be independent in space, they can’t be independent in time.
Special statistical methods are required for analysis of fluctuating data through time.
This is the subject of time series. Physicists looking at sunspots, meteorologists
looking at weather patterns, and economists looking at fluctuations in the capitalist
economies are all interested in time series.

In biology and medicine we are often interested in a number of factors that may all
be operating simultaneously in one individual to have an effect on what is being
measured. We may want to know if the effect of a new drug taken for blood pressure
is affected by gender, age, preexisting blood pressure level, dietary salt intake, and
coprescription of certain other drugs. Furthermore, we may want to compare how
the new drug and the standard drug interacts with these factors. Teasing out
answers to such questions constitutes the majority of many second-level applied
statistics courses for biologists. These answers come under headings such as ad-
vanced regression and multiway ANOVA or ANOVA models. These topics, in turn,
are derived from a branch of mathematical statistics known as generalized linear
models.

Often more than one or two measurements are made on an individual. Particularly in

psychology, vast numbers of measurements are made on each individual in the form
of responses to a questionnaire containing hundreds of questions. In biology and
medicine as well, it is common to take many measurements of various aspects of
each individual. Making sense of all this information is the subject of multivariate
analysis. Multivariate analysis includes a number of topics. For instance, principal
component analysis, factor analysis, and cluster analysis can deal with condensing
the mass of information from psychology questionnaires into a more manageable
form. These topics give methods of answering questions about whether people’s
personalities tend to fall into a limited number of types or about how much of the
variation between people can be summarized by, say, three figures (for example, the
three figures might give a measure of intelligence, a position on a scale of introver-
sion—extroversion, and a position on a scale of conservatism-radicalism). There are
also many other uses for these techniques. In medicine, the topic of discriminant
analysis is used to find a method of combining a number of indirect measures to
obtain a score that is best able to discriminate between the presence or absence of a
serious disease. This can avoid the need for expensive or dangerous operative treat-
ment to decide the issue beyond doubt. There are many other topics within the area
of multivariate analysis and many other uses for this branch of statistics.
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SUMMARY

* Occasionally, our sample constitutes an appreciable proportion of the population of
interest. In such cases, confidence intervals for means have to be reduced in width
by a factor of ;I — £, reflecting the fact that we are certain in our knowledge of an
appreciable proportion of the population.

* We can determine the number of measurements required for a statistical test to have
a certain level of accuracy.

 This text covers most straightforward statistical tests, but the scope of advanced
statistics is huge.

SUMMARY OF STATISTICAL TESTS

All the statistical tests covered in this book are designed to help answer the
question, “Are the differences we see ‘forreal’ or are they just the result of chance?”
The results from the statistical tests are not a direct answer to this question, but
instead tell us how easy it would be for chance to explain the results.

The term “differences” in this context has several shades of meaning:

1. We may be interested in the possibility of a difference of an appreciable size
caused by a definite intervention or membership of a definite group. We have
covered a number of such tests. Different tests apply in different situations, depend-
ing on the source of data and the type of data. These tests were shown at the end of
Chapter 3, and the list is repeated here with the addition of tests covered later:

Dichotomous Numerical

(e.g., better but not
or worse) necessarily Numerical and
Source of data data normal data normal data
Two related measures (e.g., Sign test Wilcoxon Paired samples
measures before and after an signed rank t test
intervention on the same test

individual; measures on one
twin who had an intervention
and the other twin who didn’t)

A single measure on two unrelated  Fisher’s exact ~ Mann—-Whitney Independent

samples (e.g., measuring the test test samples 7 test
same guantity on men and
women)
A single measure on more than X" test of Kruskal-Wallis  ANOVA
two unrelated samples association test

(applies to
nominal not
just dichoto-
mous
outcomes)
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2. We may be interested in shades of difference where there is no distinct group as
such but individual measures are at different points along a continuous range of
values. In this case, we usually use the word “association” and ask if variation in
one measure is associated with variation in another measure. Here we use corre-
lation and regression. Valid p values can be calculated for the measures that we
obtain from correlation and regression when the association is linear and the ap-
propriate test is used. There are several types of data:

* Both measures are numerical but not normal.

Test: Spearman’s p (rho)

At least one of the measures is normally distributed as the dependent variable scat-
tered about a regression line.

Test: to see if the slope of the regression line (3) or Pearson’s correlation coefficient
(r) is zero

¢ The two measures have a bivariate normal distribution.
Test: (Pearson’s) correlation coefficient

3. We may be interested in the possibility of a difference between the population
from which we have drawn our sample and some theoretical distribution.
The relevant tests that we have covered include the following:
* the use of the binomial random variable to test an hypothesis about the value of the
parameter 0 or the proportion in the population, based on knowledge about a sample.
« the use of the Poisson random variable to test an hypothesis about the value of the
parameter \ or the average rate at which something happens.

* the use of the 7 test to test whether a single value or the average of a number of
values comes from a normal distribution with p and o specified.

« the use of the single sample 7 test to test whether the average of a number of values
comes from a normal distribution with just p specificd.

* the use of the Komogoroff—=Smirnoff test, mentioned in this book as a test of the data
fitting a normal distribution, but with wider applicability.

* the use of the chi-square goodness of fit test to test whether the proportions of the

data in various categories are a reasonable match to those expected by the theoreti-
cal distribution.

Most of the tests under (1) and (2) can also be used to define confidence
intervals. Confidence intervals are a way of using the measures on the sample
to obtain information on the likely position of some unknown parameter that
describes the population or describes the average difference made by some
treatment. Again, note that a confidence interval does not directly tell us that
the unknown parameter is in a certain interval with a certain probability. In-
stead, the confidence interval tells us that if the parameter was in this interval
it could “eastly” have given the underlying data. The term “easily” refers to
calculations with a given value of the parameter, giving a p value for the data
larger than the benchmark p value.
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Statistics with Common Sense

L.

2.

3:

4.

QUESTIONS

Say that the entire adult population of northern hairy-nose wombats consists of
180 individuals and that we survey a randomly selected sample of 100 of these
individuals and measure their weights. If the results are that the mean is 27 kg and
the standard deviation is 2 kg, find the 95 percent confidence interval for the
mean weight of adult northern hairy-nosed wombats.

On a test in a statistics class the mean mark was 69.71 and the standard deviation
was 11.65. However, only twenty-one of the twenty-two students now enrolled
took the test, as one student was unable to take it because of ill health.

a. Assume this one student has been attending class as much as the other twenty-
one students until the time of the test. Find the 95 percent confidence interval
for the mean mark that would have been obtained in the first test had all twenty-
two students been able to take it.

b. The absent student’s health deteriorates further and she withdraws from the
class. What now is the 95 percent confidence interval for the mean mark of the
class?

Consider a survey on an issue in which the American population is thought to be
approximately evenly divided.

a. How many people would we need to survey for us to have a 99 percent chance
of obtaining a value that differs from the true percentage by no more than |
percentage point?

b. After taking our survey using an appropriately chosen representative sample
and with the appropriate numbers obtained from part a, we find that 40 percent
of the sample is positive about the issue under consideration. Does this mean
that we can be 99 percent certain that the true proportion of the whole of the
American population who are positive about this issue is between 39 and 41
percent? Discuss.

For each of the following scenarios state the most appropriate statistical test.

a. People are classified into two groups depending on whether they were abused
as children and the recorded outcome is whether they have had a conviction
for theft.

b. Groups of people in four different industries are selected at random and their
blood pressures are measured, as the investigators are interested in a possible
association between blood pressure and type of workplace.

c¢. It is thought that the position of a person’s surname in the alphabet may, as a
result of childhood experiences of waiting for names to be announced in al-
phabetical lists, lead to personality differences. Accordingly, a psychological
test that gives a numerical score on an introversion—extroversion scale is ad-
ministered to a group of people. About half the people in the group have sur-
names starting with the first four letters of the alphabet and the remainder have
surnames starting with the last four letters of the alphabet. The introversion—
extroversion score of all these people is assessed. Assume that inspection of
the figures suggests that it is reasonable to believe that the data come from a
normal distribution,
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. Consider the same scenario as in ¢, with names starting with letters at different
ends of the alphabet and measurement of an introversion—extroversion score.
What test should we use to assess the results if inspection of the figures sug-
gests that it is not reasonable to believe that the data come from a normal
distribution?

. A piped-music system is installed in a hospital for long-stay patients and the
recorded outcome is whether patients felt better or worse on a day when they had
access to the music than on a day when they didn’t have access to the music.

(. A piped-music system is installed in a gym and the recorded outcomes are the
amount of weight each member of the gym could lift on a day without piped
music and the amount of weight each member could lift on a day with piped
music. Assume that inspection of the figures suggests that it is reasonable to
believe that the data come from a normal distribution.

. Consider the same scenario with the gym and piped music as in f, but this time
assume that inspection of the figures suggests that it is not reasonable to be-
lieve that the data come from a normal distribution.

. People are classified into two groups, depending on whether they grew up in a
rural or urban setting, and the recorded outcome is whether they are vegetarian.

i. Groups of women, all age twenty, who adhere to four different religions are
selected at random and their time for a 100-meter sprint race is recorded, as
the investigators are interested in a possible association between athletic per-
formance and religion.

j. We are interested in the possibility of an association between religion and oc-
cupational group.

. People of varying incomes are selected and their 1Qs are measured, as the
investigators are interested in a possible association between income and 1Q.
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Appendix: Table of the
Standard Normal Distribution



Z 0 1 2 3 4 5 6 7 8 9
0.0 | 5000 5040 5080 5120 5160 5199 5239 5279 5319 5359
0.1 | 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
0.2 | 5793 5832 5871 5910 5948 5987 6026 6064 6103 6141
03 | 6179 6217 6255 6293 6331 6368 06406 6443 6480 6517
04 | 6554 6591 6628 6664 6700 6736 6772 6808 6844 6879

05 | 6915 6950 6985 7019 7054 7088 7123 7157 7190 7224
0.6 | 7257 7291 7324 7357 7389 7422 7454 7486 7517 7549
07 | 7580 7611 7642 7673 7703 7734 7764 7793 7823 7852
0.8 | 7881 7910 7939 7967 7995 8023 8051 8078 8106 8133
09 | 8159 8186 8212 8238 8264 8289 8315 8340 8365 8389

1.0 | 8413 8438 8461 8485 8508 8531 8554 8577 8599 8621
1.1 | 8643 8665 8686 8708 8729 8749 8770 8790 8810 8830
1.2 | 8849 8869 8888 8907 8925 8943 8962 8980 8997 9015
1.3 | 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177
1.4 19192 9207 9222 9236 9251 9265 9279 9292 9306 9319

1.5 | 9332 9345 9357 9370 9382 9394 9406 9418 9429 944]
1.6 | 9452 9463 9474 9484 9495 9505 9515 9525 9535 9545
1.7 ] 9554 9564 9573 9582 9591 9599 9608 9616 9625 9633
1.8 | 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706
1.9 | 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767

20 | 9772 9778 9783 9788 9793 9798 9803 9808 9812 9817
2.1 | 9821 9826 9830 9834 9838 9842 9846 9850 9854 9857
22 | 9861 9864 9868 9871 9875 9878 9881 9884 9887 9890
2.3 9893 9896 9898 9901 9904 9906 9909 9911 9913 9916
24 9918 9920 9922 9925 9927 9929 9931 9932 9934 9936

25 (9938 9940 9941 9943 9945 9946 9948 9949 9951 9952
2.6 [ 9953 9955 9956 9957 9959 9960 9961 9962 9963 9964
2.7 19965 9966 9967 9968 9969 9970 9971 9972 9973 9974
2.8 | 9974 9975 9976 9977 9977 9978 9979 9979 9980 9981
29 19981 9982 9982 9983 9984 9984 9985 9985 9986 9986

3.0 | 9987 9987 9987 9988 9988 9989 9989 9989 9990 9990
3.1 [ 9990 9991 9991 9991 9992 9992 9992 9992 9993 9993
3.2 19993 9993 9994 9994 9994 9994 9994 9995 9995 9995
33 19995 9995 9995 9996 9996 9996 9996 9996 9996 9997
34 19997 9997 9997 9997 9997 9997 9997 9997 9997 9998

Note: The decimal point at the start of each probability is suppressed for readability. Probabilities
corresponding to larger values of z can be caleulated using the following approximation:

S R
L

probability of a value greater than 7 =~ 5
2oz
. '
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CHAPTER 1

. There are innumerable possible examples. One used later in this book concerns
attention to hygiene and a decrease in the chance of infection.

. The roulette has no way of “remembering” what it did the last 500 times. There-
fore, the only relevant details are that it is fair and so has thirty-eight equally
likely places where it can land. The answer, then, is that the probability of landing
on a “36” is 1/38, so the probability of losing is 37/38.

. There is no answer that is right for everyone. This is the point: Most decision
making cannot be entirely objective. Someone who believes that clairvoyance
exists and is not uncommon may well be convinced by a correct guess of a num-
ber between | and 10, whereas the skeptic referred to in the text would want a
correct guess of a number between 1 and 1,000,000,000.

. If you are being logically consistent, your answer to question 4 should be about
the square root of the number you gave as the answer to question 3 (note that m is
the square root of n if m x m = n, so, for example, 10 is the square root of 100
because 10 x 10 = 100). For example, if you think that a correct response would
be just sutficient to convince you if there was only 1 chance in 100 of getting the
right answer by guessing alone, then two correct guesses of a number between 1|
and 10 should be just sufficient to convince you. To see this, reason that for each
of the ten possibilities for the first guess there are ten possibilities for the second
guess, so with two guesses of a number between | and 10 there are 10 x 10
possible combinations for the two guesses. Another way of seeing this is to change
the problem slightly so that the numbers to be guessed can be any of the ten
numbers 0 to 9. Then guessing any of the 100 two-digit numbers 00 (or 0) to 99 is
the same as using the first guess to guess the first digit of the two-digit number
and the second guess to guess the second digit of the two-digit number.
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CHAPTER 2

2. There are several answers:

How were the names *“chosen at random”? If the person performing the poll chose
names “at random” by eye from the phone book, he or she might unconsciously
tend to choose surnames that are likely to belong to his or her own ethnic group.
Other ethnic groups may tend to have a different opinion, and they will not be fairly
represented.

Opinions of people too poor to own phones will not be represented. The same is true
of people who choose to have “unlisted” numbers. Both these groups may tend to
have different opinions from those who have listed phone numbers.

People who live in crowded households will be underrepresented by this polling
method. To see this, imagine a village of 100 people where 10 people live on their
own in single households and all the others live in households of 9 people. If every
household in the village has a phone and one person from each household answers
the opinion-poll phone call, half the opinions obtained from the twenty phones in
the village will be from people in single households whereas only 10 percent of
people in the village live in such households.

1f those who don’t answer the phone are not pursued, then the opinion poll will tend

to underrepresent the opinions of people who have lives that take them out of reach
of the telephone and conversely may tend to overrepresent the opinions of people,
such as elderly retirees or mothers of young children, who may tend to spend more
time at home.

The opinions of those who refuse to give their opinions to opinion pollsters will not
be represented.

CHAPTER 3

1. (a) (i) 80/140 or4/7 (i1) 60/140  (ii1) 30/140  (iv) 110/140
(b) 110/140 = 80/140 + 60/140 — 30/140

(¢) neither

(a) 42/10,0000r 0.42% (0)58% (c)3% + 14% -0.42% =16.58% (d)93.7%
1/2 x3/4+1/3 x 174 =11/24 = 45.83%

4.475%

(a) 0.1064 or 10.64% (b) 0.0288/0.1064 = 0.2707 or 27.07%
(¢) 0.916 or 91.6% and 0.912/0.916 = 0.9956 or 99.56%

2/3 = 66.67%

Probability land, 0.3 or 30%; probability sea, 70%

. (@)5t=120 ()20 (¢) 10 (d)0.1

(a) 1/252 or about 0.003968 or 0.3968%

(b) As in all decision making informed by statistics, there is no absolutely correct
answer. However, to me it would seem more reasonable to believe that the expla-
nation for the selection of all girls is that the teacher has a sex bias rather than to

PN

RS
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10.

I.

2

believe that the teacher is unbiased and the selection is explained by a 1/252
chance coming off.

(c)2/252

(a) 1/252 = 0.00398

(b) The comment given as answer to 9 (b) applies. My benchmark p value (i.e.,
the value just sufficient to convince me that the association is real and not just due
to chance) would be 1.0 for (1), 0.000000001 or smaller for (ii), and 0.05 for (iit).
This is because I would reason that (i) riding without lights at night is bound to be
more risky, (ii) it is almost impossible to imagine how birthdate could affect li-
ability for accident, and (iii) sports enthusiasts may have more skill but also may
take more risks when commuting by bike. On the other hand, neither of these
factors may apply to their commuting. In the absence of moderately convincing
evidence to the contrary, I would not want to make a decision that sports enthusi-
asm makes a difference to risk. Accordingly, my answers to (b) (i), (ii), and (iii)
are yes, no, and yes, respectively.

(¢) pvalue 1/6 = (.167. Accordingly, my answers to (1), (ii), and (iii) are yes, no,
and no, respectively.

CHAPTER 4

(@) (1) hoas (1) oos (1) Mo (Av) "o (V) P00 (VD) P o

(b) It seems reasonable to me here to use the conventional benchmark p value of
0.05. This choice of benchmark p value might be reasonable for a doctor who
doesn’t want to have to store an extra fact in his or her head regarding the relative
effectiveness of drugs without moderately convincing evidence. Others are en-
titled to a different opinion: An asthmatic may want to choose the drug favored by
even the weakest evidence and so may use a benchmark p value close to 1. An
asthmatic with this opinion would want the drug favored by even a slim majority.
A two-tail test is reasonable (either drug could be superior). With these consider-
ations, there would have to be | or fewer (i.e., | or 0) preferring fenoterol (or
preferring salbutamol) to convince a doctor whose benchmark p value is 0.05.
The p value for this result is 2 x (1/1,024 + 10/1,024) 0.0215. A result of two or
fewer favoring either drug would occur more than 5 percent of the time, as p =2
X (Y1021 + 9024 + Poas) = 0,109,

. (a) p (one-tail test) = /1024 = 0.0107. A one-tail test may be appropriate, since

presumably there is a preexisting sentiment that if the machines do anything for
sleep, they will enhance it. This p value could well be convincing to some people,
but since I know of no medical mechanism by which the machine could work, 1
would remain dubious and I would require a more stringent benchmark p value of
say 0.001 to convince me.

(b) As for part (a), the “ideal” treatment of the “don’t knows” is debatable; many
think that it is okay to simply ignore them.

(c) Ignoring the “don’t knows.” the computer gives a two-tail p value of 0.000425.

The one-tail p value is half of this. Given my benchmark p value of 0.001, I am
convinced. Note this question illustrates a major advantage of using p values rather
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than the actual numbers to assess the evidence: The strength of the evidence of “1
out of 10” could not be compared with the strength of the evidence provided by
“65 out of 95” without a p value approach.

. p=0.0118 (two-tail). I would regard this as convincing evidence for more men

with broken legs.

. p <0.000001 (two-tail). Convincing evidence.

(a) BCy(¥) (V)" + 3C,(4)7(Y4)! +HCo(%) (V) + 3C,(34)(V4) = 4689 x (%)™ X
(14) = 0.05514

(b) (3%4)7 =~ 0.1335

. (a) Mann—-Whitney two-tail p value of 0.29828 (exact calculation using pds com-

puter program; 0.27647 using approximate calculation on computer). While teach-
ers are unlikely to be of exactly the same effectiveness, it would seeem unfair to
declare one teacher superior with evidence that could be explained by chance this
easily. I would use the conventional 0.05 benchmark p value here.

(b) No p value calculation is possible in the classroom situation, as the performances

of the students will not be independent. For example, one very disruptive student
in one teacher’s class could affect the performance of the whole class.

. Wilcoxon signed rank two-tail p value of 14/1,024 (exact calculation using pds) =

0.01367. Reasonably convincing evidence for me.
0.0498, 0.149, 0.224,0.224,0.168, 1.81 x 10°*

. 0.5 cases per three months; exactly four cases, 0.00158; four or more cases, 0.00175.

Knowing that new factors in the environment can trigger disease, it seems reason-
able to use a benchmark p value that on the one hand does not demand an extreme
coincidence before conceding a new environmental factor is operating but on the
other hand does not provoke unnecessary alarm when events occur that could
easily be due to coincidence. Perhaps the traditional 0.05 benchmark p value would
then be appropriate. The hematologist using this traditional benchmark p value
would conclude that a new environmental factor is responsible for these cases, as
the p value here is 0.00175.

CHAPTER 5

. 115.76 megawatts. In pds, click on “Statistical functions” and “Normal distribu-

tion” and enter 0.995 under the heading “Probability Z < z.” Click “OK.” This
gives 2.576 standard deviations. Since each standard deviation is 10, the answer
s 90 + 10 x 2.576.

. (a) 0.008198. The standard error for a group of sixty-four is /s or 1.25, 50 57 is */1 25

or 2.4 standard deviations below the mean of 60. In pds, click on “Statistical
functions” and “Normal distribution” and enter —2.4 under the heading “z value.”
Click “OK” to give the answer.

(b) No calculation is possible, as students are not selected independently of each
other.

. (a) (i) zero; no one will be absolutely exactly any specified value. (ii) 0.3183

(ii1) 0.0345
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{b) 0.0345

(¢) p=0.0027 (two-tail). This is sufficiently convincing evidence for me, as it is
quite plausible that the environments of different countries will have effects on
physiological measurements.

4. A paired sample ¢ test may be reasonable here, particularly as the standard devia-

tion of the differences is small (3.817) compared to the speeds we are dealing
with. This test gives p = 0.0465. The Wilcoxon signed rank test, using less infor-
mation, gives p = 0.1563. It seems reasonable to use the result from the paired
sample ¢ test and the traditional benchmark p value here and so conclude that
there is reasonably convincing evidence that brand B. on which our sample of
cyclists travel faster by an average of 4.1, is superior.

5. (a) Itis not reasonable to perform a test based on the normal distribution on these

1.

figures. In each group many of the figures are less than 1 standard deviation above
the minimum possible value of 0. The assumption of a normal distribution would
be a distortion of the reality and the p value should not be believed.

(b) independent samples ¢ test p value 0.0620 and Mann—Whitney test p value
0.0295. Both these values assume a two-tail test, whereas a one-tail test seems
more reasonable in that one would expect that any difference would act in favor of
one group (the more expensive bikes).

(c) In the absence of any strong feelings, it seems reasonable to use the conven-
tional benchmark p value of 0.05 (it may be argued that this is too restrictive in
that one would expect a priori expensive bikes to be better, but it could also be
that they are more delicate). Using the traditional benchmark and half the p value
obtained from the two-tail Mann—Whitney test, it is reasonable to conclude that
expensive bikes last longer.

CHAPTER 6

(a) H,: Violent cartoons do not encourage antisocial behavior. In my opinion this
is a very dubious null hypothesis, but some would regard it as appropriate. H,:
Violent cartoons encourage antisocial behavior. A one-tail test is appropriate.

(b)H,; Barely plausible for me, others may find it quite believable. H,: Very plau-
sible for me.

(c) Cost of Type I error: Provides ammunition in favor of unnecessary restriction
on civil liberties (censorship of violent cartoons). Cost of Type I1 error: Results in
missing an opportunity to argue for effective intervention (censorship of violent
cartoons) that will reduce antisocial behavior in the next generation.

(d) For me, the benchmark p value would be I. Since I believe that H, is more
plausible than H,, I am going to believe in H, even if results can be readily ex-
plained by H,. My belief that the costs associated with a Type I error are less
important than the costs associated with a Type Il error reinforces my decision to
adopt a benchmark p value of 1. Others may believe that the traditional bench-
mark p value of 0.05 is appropriate.

(e) p = 1/16 = 0.0625. T am already convinced of H . Others may still be
unconvinced, but some who were initially skeptical should be convinced by this.
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2.

(VSR R

Answers are subjective. I give those from my own world view. The following
hypotheses are inappropriate: b, e, g, 1, k, m, n, ¢, u, v, z through to ee, gg, kk, and
mm. | believe a priori that these null hypotheses are probably false, some almost
certainly so. All the other null hypotheses are appropriate in my opinion. The
following hypotheses are in my opinion a priori highly believable and so [ would
require a very small p value to talk me out of them. In terms of the question, 1
would require a large value for x, as in 1 chance in x (for example, [ chance in
1,000,000 or p = 0.000001). Note that [ express opinions from a skeptical point of
view. Believers in astrology, for example, may have quite a different and valid
viewpoint about including answers d and oo in the following list. Believers should
go further and regard it as inappropriate to test hypotheses about astrology from
the starting point that they don’t work. However, believers may still consent to
these null hypotheses to present evidence to convince skeptics. My listis a, d, x,
ii, jj, 00, pp, 1T, S8, and uu. Opinions regarding an appropriate p value may vary for
many of the other null hypotheses.

Note that some would regard many of the Hs listed in this answer as being suit-
able for a one-tail test to be inappropriate Hgs, as they would have a priori ideas
that the Hys were almost certainly false. If one did not believe testing was inap-
propriate, a one-tail test would be used for a, ¢, d, e, h, 1, and k. A two-tail test
would apply to the remainder.

Std error 0.2670; ¢, values corresponding to 5%, 2.5%, and 0.5% probabilities in a
single tail are 2.015, 2.571, and 4.032, respectively. Hence, (a) 90% confidence
interval ( 201.662,202.738), (b) 95% confidence interval (201.513, 202.886), (c)
99% confidence interval (201.123,203.277), and (d) it seems more reasonable to
believe that the bars are on average heavier than 200 unless there are strong a
priori reasons to believe they are not. In any case, while it may be necessary to
use 200.0 or some other single figure for the mean, we should recognize that there
is zero probability that the true population mean exactly equals a single nomi-
nated figure.

CHAPTER 7

. Many examples are possible. For example, obesity and lack of exercise are likely

to be associated because lack of exercise results in obesity: Food eaten is not
needed to fuel muscle power and so is stored as fat. But obesity also makes it
uncomfortable to perform exercise, and social factors may also make the same
person less motivated to look after his or her health, both in terms of maintaining
normal weight and in terms of keeping tit. Other examples include many circum-
stances where the expression “vicious cycle” is applicable.

No. There is overmatching.

. The possibility that looking at football rather than music causes heart attacks seems

farfetched. On the other hand, it may well be reasonable to believe that the two
are associated as an example of a case of C causing both A and B. The social
position and lifestyle of a football enthusiast is likely to be very different from
that of a classical music enthusiast, and the former may tend to smoke more, eat
more fatty food, or have more of other risk factors for heart attacks than the latter.
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4. Knowing of no reason why there would be an association between cholesterol and
violence, I would want more compelling evidence than the benchmark p value of
0.05. On the other hand, the brain is presumably affected by blood chemistry and
so I would not want to blame evidence of an association on chance when it is
exceedingly hard for chance to explain the results. I'lf compromise and choose a
p value of 0.01. Sign test p value (two-tail) gives 0.0026. Therefore, I now prefer
to believe that low cholesterol is associated with a violent death.

Learning that the test for an association with violence was just one of many statis-
tical tests that were conducted causes me to revoke my original opinion. If one
looks for long coincidences for long enough, one is bound to find them. In other
words, finding one long coincidence during a search of many possible coinci-
dences is no long coincidence. Given that the criteria for deciding that an effect is
“for real” is the occurrence of a genuine long coincidence, it is appropriate to now
not believe the effect is “for real.”

Note, the wording of the question taken together with the material in Chapter 4
would suggest the use of the sign test. However, the sign test is not quite appropri-
ate here. The null hypothesis used in the sign test assumes that the probability of
above or below median cholesterol is 0.5000 for each person counted as a violent
death. This is true for the first person counted here. However, if the last person to
be counted has a below median cholesterol, they would have been chosen from a
group of 1,981, 984 of whom had below median cholesterol (19 people out of the
original 2,000 having already been eliminated). The probability of choosing this last
below median cholesterol person is then 0.4967, not 0.5000. The more appropriate
test is Fisher’s exact test, mentioned in the previous question and in Chapter 3 and
discussed further in Chapter 8. However, with an experimental group of 2,000, of
whom only 20 are removed, there is little difference between the p value 0.00258
given by the sign test and the p value 0.00246 given by Fisher’s exact test.

If 1,800 have died, our analysis is not changed but the interpretation is. Since high
cholesterol is associated with premature death from heart disease and nearly ev-
eryone has died, it may well be that those who died from violence died that way
because they had lived a long time and so had longer exposure to risk of violence
than those with high cholesterol who were likely to have died prematurely. Low
cholesterol then causes a long life, which causes increased risk of violent death,
but cholesterol itself does not increase the risk of violence.

5. (a) One may detect rubella as a cause, but there is concern that false associations
will be detected because mothers of retarded babies might be more introspective
about their pregnancies and recall more incidences, whether they are relevant or not.

(b) The study should be able to detect that having many children is a risk factor
for parenting a mentally retarded child. Note that it is logical to expect that the
mothers of retarded children will have more children on average than their neigh-
bors and the rest of the female population. This is true even if being one of many
children is not a risk factor for retardation, simply because a mother of ten, say,
has given herself ten chances of producing a retarded child whereas a mother of
one has only given herself one chance.

(c) Age effects may be detected by this study design. However, there are at some
complicating factors. As explained in (b), mothers of retarded children are more
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likely to be mothers of many children. It takes time to produce many children, so
these mothers may be older. It is also possible that there are problems with the
control group. These are the altruistic neighbors. There could be a tendency for
the amount of altruism in the control group to be associated with their age, so
perhaps the control group might differ in age from the “ideal” control group.

(d) and (¢) There is overmatching. {f one house is poor or near a smelter, the same
is likely to apply to the neighbors.

CHAPTER 8

. Fisher’s exact test p = 0.0961 (two-tail), 0.0514 (one-tail). Since I wouldn’t need

much convincing that an imposing stature is an advantage in administering oth-
ers, [ would set my benchmark p value somewhat higher than the conventionat
0.05 and use a one-tail test. 1 therefore would now be reasonably convinced that
tall stature is a factor in becoming an administrator.

Fisher’s exact test p = 0.00858 (two-tail), 0.00429 (one-tail). Since H, is not im-
plausible, it now seems reasonable to believe that absentee ownership is associ-
ated with erosion.

. Mann—Whitney two-tail test p = 0.00909. Using half this value. the result of the

one-tail test is appropriate, because a drug designed to strengthen may not work
but would be most unlikely to weaken. An independent samples 7 test is inappro-
priate because the values seem unlikely to be even approximately normally dis-
tributed, but this test gives a similar result. There is the same result for men and
women: The drug strengthens both. The combined result for men and women is
entirely unconvincing, with a (two-tail) p value of 0.6033 (approximate method;
p = 0.6297 by the exact method). This is an example of Simpson’s paradox, but
where the outcomes are numerical measures rather than categories. All men are
stronger than women (in this example). The drug makes both men and women
stronger, but women with the drug are still weaker than men without the drug, and
most women get the drug and most men do not. The combined result reflects the
fact that the advantage of the drug to both sexes is swamped by the tendency of
the weaker sex to get the drug.

Chi-square test of association p = 0.0114. It seems plausible to think that people
with different belief systems may have different priorities. On the other hand, one
wouldn’t want to make generalizations about this on flimsy evidence. The con-
ventional 0.05 benchmark seems reasonable to me here. Therefore, after seeing
this calculation I would believe that there is a real association here.

. McNemar’s test (calculated as a sign test with eight in “favor” and twenty-two

“against” comparisons) p = 0.0161 (two-tail). Halving this p value to give the
results of a one-tail test would be appropriate if one knew that there were biologi-
cal reasons to suspect carpet in causing asthma, or if one was aware of a cam-
paign to persuade the parents of asthmatic children to remove carpet from the
child’s bedroom. This is convincing evidence of an association between carpet
and asthma. Fisher’s exact test of 152 asthmatics with carpet, 48 asthmatics with-
out carpet, 138 nonasthmatics with carpet, and 62 nonasthmatics without carpet
gives p = 0.1453 (two-tail); x° test on same figures gives p = 0.117. The signifi-
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cance of carpet is partly submerged under the weight of the many cases where
both children or neither child has carpet as part of the family lifestyle. Figures of
8 and 22 added to these much larger numbers will give results that can easily be
explained away as chance fluctuations in large numbers.

6. Use the chi-square goodness of fit test with expected values of 100 for each of the
six outcomes. The chi-square value is 2.68, and values at least this far away from
0 in a chi-square distribution with 5 degrees of freedom occur (.75 of the time
(i.e., p =0.75). There is no convincing evidence that the die is unfair.

CHAPTER 9

1. ANOVA gives a p value of 0.0451. If we were to use the conventional benchmark
p value of 0.05, we would say that there is evidence that marks in statistics are
related to the day of birth. Of course, this is silly. If I were offered the choice of
believing that there was a mysterious reason at work that linked day of birth to
statistics performance or instead believing that a 4.5-percent chance had eventu-
ated, I would certainly take the latter. In other words, my benchmark p value
would be much lower than the traditional 0.05.

ra

ANOVA gives a p value of 0.549. If we were to use the conventional benchmark p
value of 0.05, we would say that there is no convincing evidence that the im-
proved varieties have a yield any different from the traditional variety. However,
if we look at the means of the three varieties, we see that the improved varieties
have higher mean yields than the traditional variety. It is true that these additional
yields could easily be accounted for by chance given the amount of variation here.
but it may be unfair to blame chance for the result when we know that the im-
proved varieties have been produced to give higher yields. It would certainly be
untrue to conclude that the figures show no evidence of improved yields: They
provide some evidence, but it is evidence that could be easily accounted for by
chance. It should be noted that the farmer’s misleading words *no evidence™ here
are used in similar situations by many who use statistics. It is noted that the amount
of data is small and it seems likely that if the farmer was to obtain more data he
would eventually obtain enough to give a convincing p value. However, there is
no obligation on the farmer or others who present conclusions based on statistics
to use enough data for all worthwhile differences to emerge.

3. ANOVA gives a p value of (.164. The same argument applies here as in the an-
swer to question 2, but even more strongly. This really is an inappropriate null hy-
pothesis. It is general knowledge that locations further from the equator are colder on
average. We should be convinced of this no matter how easy it is for chance to explain
results on the assumption that all four locations have the same average temperature.
However, there is a further point here. ANOVA is not the optimum method for analyz-
ing these data. It doesn't use the information given about latitude. This informa-
tion can be used if we think of the data in the form of the following list:

Latitude 195 195 275 275 34 34 37405 315
Temperature 27 31 24 18 16 22 13 21

Regression can be applied and it gives a p value of 0.0165 for the hypothesis that
there is no relationship between latitude and temperature. Although we should
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already have been convinced that there was a relationship between temperature
and latitude, we can be convinced yet again by this analysis.

Regression p = 0.0000664. It still seems more likely that what we are seeing in
these figures is the outcome of a 6 in 100,000 chance rather than evidence that a
mysterious force stemming from faraway Brisbane’s rainfall is having influence
on American book importers. In other words, in these circumstances my bench-
mark p value is way below the conventional 0.05 and would be considerably less
than 6 in 100,000.

Regression p = 0.114. This tells us that the variation in house prices in 2000 could
“quite easily” be explained by chance without any relationship to the value of the
houses ten years earlier. However, I would be surprised if the value of the houses
previously had no bearing on their value now. I would either regard this as an
inappropriate null hypothesis or else allow myself to be talked out of this null
hypothesis very easily. Noting that the 3 is positive, indicating that as the original
price tends to increase the recent price tends to increase, I would think it far more
believable to think that this was a real relationship rather than the product of a
chance that happens 11 out of 100 times.

. ltime in 6! =720 times. Yes, convinced by Spearman’s rho of —1 with p = /720 =

0.0014.

. The regression effect. The very wettest places one day might often be wet, but are

not that likely to be the wettest places another day.

. Sign test p = '/s12 = 0.002. The regression effect again. The places with the high-

est number of rabbits one year may well tend to have a rather high number of
rabbits most of the time but will not usually be the places with the highest num-
bers every time. They were the highest on the first occasion presumably not only
because they provided good habitat for rabbits, but also because chance factors
had particularly favored the rabbits at those places in that year. These chance
factors will normally not boost rabbit numbers to the highest levels in other years.

There is another issue that applies to questions (7) and (8). The data will not
generally be independent, as is assumed by our statistical tests. Rabbit numbers
everywhere at the time of the second measurement might be down because the
second measurement might be taken during a drier year than the first.

CHAPTER 10

. (26.739, 27.261) using the normal distribution as an approximation to the #,, dis-

tribution; (26.735, 27.265) using ¢, distribution itself.

. (a) (68.579, 70.841). (b) The confidence interval is of zero width about the point

69.71, since we know the average of the marks of this class with certainty.

. () 16,587.

(b) It is true that when we are about to take our sample we will have at least a 99-
percent chance of obtaining a value within 1 percent of the true value (“at least”
applies because we use the largest possible value of the product 8¢ in our theory).
It is not true that a particular value obtained necessarily has a 99-percent chance
of being within 1 percent of the true value. After obtaining a particular outcome
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we can’t reverse the probability statement made prior to the survey to give a prob-
ability statement about the location of the true mean. Instead, we will have a
confidence interval (here it is [39%, 41%]). As explained in the section on confi-
dence intervals, confusing confidence intervals with probability statements is like
confusing the statement, “Where there is smoke there is a 99-percent chance of
fire,” with the statement, “Where there is fire there is a 99-percent chance of
smoke.” The range from 39 percent to 41 percent consists of those numbers for
the true proportion that are compatible with our findings in terms of a p value of
0.01. However, we may feel that sheer bad luck has given us a misleading result
and we need to take this into account. If we feel our survey has underestimated or
overestimated the true proportion, then there is not a 99-percent chance that our
range contains the true proportion. Only in the absence of a prior opinion about
the true value is it reasonable to equate confidence intervals with probability in-
tervals.

4. (a) Fisher’s exact test or chi-square test of association
(by ANOVA
(c) Independent samples ¢ test
(d) Mann—Whitney test
(e) Sign test
(f) Paired samples 1 test
(g) Wilcoxon signed rank test
(h) Fisher’s exact test or chi-square test of association
(i) ANOVA
(j) Chi-square test of association

(k) Regression
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There are many books that can be read by people seeking further information
in this field. There are several main areas: Books that give more general math-
ematical background, books that give more of the theory of probability and
statistics, and books on applications of statistics. What follows are a few books
I have found helpful in these areas.

C. V. Durell. Advanced Algebra. Vol. 1. London: G. Bell and Sons (first published
1932 and reprinted numerous times). My book started with a promise that there
would be no mathematics beyond the tenth grade level. I believe I have kept
that promise, though there are places in the book where I indicate that a deeper
knowledge of mathematics would enable a more complete understanding of the
details of the statistical techniques. There is a great deal that would have to be
covered for a complete mathematical understanding of all the steps used in
deriving all the statistical techniques covered in this book. However, as a start,
some twelfth grade mathematics would give readers more insight in parts of
this book where I have referred to logs and exponentials and the number e.
There are many texts on twelfth grade mathematics. Different readers have
different learning styles and so there is no such thing as an ideal book for
evervbody. Personally, 1 have found this little old book by Durell to be very
useful. Its clear but very concise explanations appeal to me.

Stephen Jay Gould. The Mismeasure of Man. London: Penguin Books, 1996. This is a
general-interest book rather than a textbook. It deals with one major area in
which stutistics has been misapplied. This is the ranking of humans and groups
of humans according to mental ability. It contains numerous examples where
statistics are flawed at various stages, ranging from the selection of a sample
to the interpretation of the results. However, these flawed statistics deeply in-
Sfluenced much of the social policy and education system of the Western world
over the lust century. The book contains an interesting discussion that hints at
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the richness as well as the potential for misuse of more advanced statistical
theory.

1. A. Rice. Mathematical Statistics and Data Analysis. 2d ed. Belmont, Calif.: Duxbury
Press, 1995. This book covers more briefly the material on probability relevant
to statistics that is covered by S. Ross. It then goes on to give an almost com-
plete mathematical understanding of all the steps used in deriving all the sta-
tistical techniques covered here. However, the book assumes knowledge of
calculus and the theory of matrices at the first- or second-year university level.

Sheldon Ross. A First Course in Probability Theory. 3d ed. New York: Macmillan,
1988. This reasonably slim book gives a more complete understanding of prob-
ability theory and random variables. Some knowledge of calculus at the twelfth
grade level is necessary for understanding some sections in the latter parts of
the book. In one section more advanced knowledge of calculus is required.
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18, 107; unimodal, 16; univariate, 12
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Dispersion, 18

Distribution-free statistics, 130

Double blind, 170

Error term, 206, 207
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Frequentist statistics, 2, 54

Goodness of fit, 194-195, 235

Heteroscedastic, 212
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118, 143, 144

Independence, 20, 35, 65, 66, 78, 87, 88,
101, 111-113, 118, 198, 209, 210,
214,215

Independent samples ¢ test, 124129

Interquartile range (IQR), 22

Interventions, 168

Kolmogoroff-Smirnoff test, 135
Kruskal-Wallis test, 202-205

Law of total probability, 47-49
Lilliefors test, 135

Line graph, 17, 23, 24
Lognormal distribution, 107-108

Mann—Whitney test, 82-85
Matching, 172

McNemar’s test, 76, 192-194
Mean, 14, 90
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Medical screening, 51-52
Mode, 16

Multivariate analysis, 233
Mutually exclusive, 34, 36, 37

N(p,02), 100
Nonparametric statistics, 130, 136

Normal distribution, normal curve, 98—
139

Null hypothesis, 67

Numbers required in a sample, 43, 44, 69,
95n.1, 110, 115-116, 144-147,229-231

Objectivity, 2, 141, 155

Observational study, 168, 171

Odds ratio, 183, 185-187

One-tail and two-tail tests, 73-76, 82,
85, 128, 180-181

Ordinal data, 11, 12, 80, 82
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Outliers, 18,29

p value, 4-6, 8, 40-45, 54, 67-72, 79,
81,85,89, 108-111, 115,123, 124,
127-129, 142, 146, 148, 178—183,
190-195, 200, 204,210,211,221-223

Paired samples ¢ test, 121-124

Pairing, 76-77, 121-122, 193, 194

Percentiles, 22, 23

Permutations, 57

Pie chart, 13

Placebo, 170

Poisson random variable, 86-89

Population, 9, §9-92, 229

Post-hoc tests, 203

Power (of a test), 147, 161, 162, 223

P-P plots, [31-135

Probability, 33-61; addition rule, 34;
conditional, 39, 50; definitions, 33;
multiplication rule, 35

Probability density, 97, 98

Probability density function (pdf), 98

Probability weighted averaging, 90

Proportion of the time, 33, 34

Prospective studies, 171

Q-Qplots, 131-135
Quartiles, 22, 23

Random variables, 63—139; binomial,
64-66; Cauchy, 102; continuous, 97—
139; discrete, 63-96; lognormal, 107—
108; normal, 98-101; Poisson, 86-89;
standard normatl (Z), 102-107; uniform,
134
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Range, 18

Rank, 80, 83, 108

Regression, 197, 205-218
Relative risk, 183185
Representative sample, 10, 111
Retrospective studies, 171

s, o, standard deviation, 20-22, 91, 92

Sample, 9, 89-92

Sampling distributions, 111-114

Sensitivity, 47, 48, 50, 147

Sequential analysis, 232

Sign test, 66-79

Significance, 5, 146

Simpson’s paradox, 187-188

Single sample ¢ test, 119-121

Skewed data, 18, 107

Spatial statistics, 233

Spearman’s rho (p), 57,221-223

Specificity, 47, 48, 50, 147

Standard deviation, 20-22, 91; sample
standard deviation, 92

Standard error (of the mean), 116

Standard normal random variable, 103—
107

Statistical significance, 5, 42, 54, 69,
109

Stem and leaf plot, 25-27

Stratified sampling, 232

Studies, experimental or observational, 168

Summary statistics, 14

Tests: x° (chi-square) tests, 181-195;
Fisher’s exact test, 40-45, 175-181; F
test, 125, 139 n. 4, 199, 200; goodness
of fit tests, 194-195, 235; independent
samples ¢ test, 124-129; Kolmogoroft-
Smirnoff test, 135; Kruskal-Wallis
test, 202-205; Lilliefors’ test, 135;
Mann-Whitney test (Wilcoxon rank
sum test), 82-85; McNemar's test, 76,
192-194; paired samples ¢ test, 121-
124; sign test, 66-79; single sample ¢
test, 119-121; Wilcoxon signed rank
test, 80-82; z test, 108—111

Ties, 69-70, 82, 85

Time series, 233

Transformations, 129, 136, 202

Trial: binomial, 64; clinical, 170

Uniform random variable, 134
Van der Warden’s method, 134
Variance, 20, 91

Venn diagrams, 34-37

Wilcoxon rank sum test, 85
Wilcoxon signed rank test, 80-82

ztest, 108-111, 115-118
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