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To my father: The dream lives on.
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I remember my first college statistics course. I studied hard and did 
the homework. I could calculate confidence intervals and perform 
hypothesis tests. I even earned a good grade. But the subject was so 
strange to me, I couldn’t keep the different concepts straight. Popula-
tions, estimates, p-values, these things were nothing but a jumble of 
meaningless terms, and what little I learned vanished the moment I 
turned in the final exam.

Maybe I’m a masochist or maybe just determined, but I stuck with 
it. I took a second statistics course and then a third. It wasn’t until I’d 
earned a Ph.D. in the field, worked on a number of real world problems, 
and made almost every mistake imaginable that I began to feel like I 
had a working grasp of statistics and its role in the data analysis process.

That’s where this book comes in. It’s driven by examples, not sta-
tistical concepts. Each chapter illustrates the application of basic sta-
tistics to a real dataset collected in the real world, far from the theorems 
and formulas and neatly contrived examples of the classroom. Hope-
fully, this book will provide you with the context you need to apply the 
basics of this slippery but oh-so-important subject to your own real-
world problems.

Visit http://khjarman.com/ to contact the author, read more about 
the art of data analysis, and tell us your own statistical stories.

Kristin H. Jarman 
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The Basics

PART 1





As I sat in my favorite coffee shop, latte in hand, wondering how to 
introduce this book, my mind drifted to the conversations around me. 
At the table to my right sat a couple of college guys, decked out in 
sweatshirts touting a nearby university. They were arguing baseball, 
speculating which team was most likely to win the pennant and make 
it to the World Series. To my left sat three middle-aged women, speak-
ing in quiet voices I had to strain to hear. They were talking about 
menopause, comparing their own experiences, trying to sort through 
the conflicting news about which, if any, treatments actually alleviate 
the symptoms. Behind me was the liveliest conversation of all. Two 
men were talking politics. Both men seemed to agree about who should 
win the next presidential election, but that didn’t keep them from 
arguing. Many words were exchanged, but it came down to this. One 
of the men, citing a national poll, insisted his candidate was clearly 
going to be the winner. The other, citing yet another poll, claimed the 
outcome was anybody’s guess.

Aside from my tendency to eavesdrop, there’s a common theme to 
the three conversations. Whether they knew it or not, all of these people 
were talking statistics.

Most people run across statistics on a daily basis. In fact, in this 
age of instant information, it’s hard to get away from them. Drug 
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studies, stock market projections, sales trends, sports, education, crime 
reports: the list of places you’ll find them goes on and on. Any time 
somebody takes a large amount of information and reduces it down to 
a few bullet points, that person is using statistics. And even if you never 
look at any raw data, when you use those bullet points to make conclu-
sions or decisions, you’re using statistics as well.

Being a statistician has never made me the life of the party. In fact, 
when I meet a new person, the reaction to my profession is almost 
universal. Here’s how a typical conversation might go.

Me:  How do you know John?

New Friend:  We work together at XYZ Corp. I’m in sales, and John’s 
in marketing. How about you?

Me:  Oh, we’ve worked together on a few projects as well. So, are you 
married?

New Friend:  Yeah, sure. What projects?

Me:  The Michelson account, the Trends Survey, a few others. How 
‘bout kids? Do you have kids?

New Friend:  Hey, I worked on the Michelson account, too. Ran the 
sales campaign. But I don’t remember you.

Me (glancing around the room):  I was just a consultant.

New Friend:  Hey, wait a minute. I do remember you. You told us we 
couldn’t launch the product in June . . . something about summer 
and . . .

Me (shrugging):  Seasonal effects on customer demand. Yes, that’s me. 
I’m the statistician.

(There’s a long, awkward pause. New Friend eyes me suspiciously.)

New Friend:  I always hated statistics.

It may not be the life of the party, but when it comes to sorting 
through mounds of information, statistics is the belle of the ball. And 
it doesn’t take a graduate degree in the subject to know how to use it. 
If you can apply a few basic statistical tools and a little practical knowl-
edge to a problem, people think you’re genius, and maybe even a little 
clairvoyant. These qualities may not draw crowds at the neighborhood 
mixer, but they do tend to result in big raises and big promotions.

Real-world statistics isn’t only about calculating an average  
and a standard deviation. And it’s not always a highly precise, exact 
science. Statistics involves gathering data and distilling large amounts 
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of information down to a reasonable and accurate conclusion. Most 
statistical analyses begin not with a dataset, but with a question. What 
will be the impact of our new marketing campaign? Does this drug 
work? Who’s most likely to win the next presidential election? Answer-
ing these questions takes more than a spreadsheet and a few formulas. 
It’s a process: reducing the question down to a manageable size, col-
lecting data, understanding what the data are telling you, and yes, 
eventually making some calculations. Often this process is as much an 
art as it is a science. And it is this art, the art of data analysis, that 
provides you with the tools you need to understand your data.

There are no proofs in pages that follow. Mathematical formulas 
are kept to a bare minimum. Instead, this book deals with the practical 
and very real-world problem of data analysis. Each chapter asks a ques-
tion and illustrates how it might be answered using techniques taught 
in any introductory statistics course. Along the way, common issues 
come up, issues such as:

•	 How to turn a vaguely worded question into a scientific study

•	 How different types of statistical analyses are well-suited to dif-
ferent types of questions

•	 How a well-chosen plot can do most of the data analysis for you

•	 How to identify the limitations of a study

•	 What happens if your data aren’t perfect

•	 How to avoid misleading or completely false conclusions

Every chapter is a case study, complete with a question, a data 
collection effort, and a statistical analysis. None of these case studies 
addresses society’s fundamental problems (unless you think the lack of 
appreciation for superhero sidekicks is one of them). None of them will 
help you improve your company’s sales (unless those sales are depen-
dent on scientific proof that Bigfoot exists). And none of them will help 
you pick up women (especially not the one about gender stereotypes). 
On the other hand, all of them can be used as a template for your own 
data analysis, whether it be for a classroom project, a work-related 
problem, or a personal bet you just must win. And all of them illustrate 
how basic data analysis can be used to answer almost any question you 
can imagine.

The statistical techniques presented here can be found in most 
spreadsheet programs and basic data analysis software. I used Microsoft 
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Excel throughout, and in some cases, the Analysis Add-In pack was 
required. Here and there, a specific function is mentioned, but this isn’t 
a book on statistics using Excel. There are plenty of good texts covering 
that topic. Some of the most popular, written by a man known as Mr. 
Spreadsheet, are listed in the Bibliography at the end of this chapter.

The outline of this book follows a typical introductory statistics 
course. Part One gives you the basic tools you need to ask a question 
and design a study to answer it. Part Two shows what you can do with 
a solid understanding of these basic tools. Each chapter is self-contained, 
but like a typical textbook, the concepts build on one another, and the 
analyses gradually become more sophisticated as the book progresses. 
If you’re dying of curiosity and you’ve just got to find out when the 
zombie flu went viral, then go ahead and jump to Chapter 9. But if you 
can wait, I recommend you turn the page and read through the chapters 
in order.

I hope you enjoy reading these case studies as much as I enjoyed 
writing them.

BIBLIOGRAPHY

Walkenbach, John. 2007. Excel 2007 Charts. Wiley.
Walkenbach, John. 2010. Excel 2010 Bible. Wiley.
Walkenbach, John. 2010. Excel 2010 Formulas. Wiley.
Walkenbach, John. 2010. John Walkenbach’s Favorite Excel 2010 Tips and Tricks. 

Wiley.



The mountain devil. Jacko. Sasquatch. Bigfoot. These are just a few 
names for a mysterious apelike creature rumored to be living in moun-
tain forests around the United States. He’s been a legend for genera-
tions. Ancient stone carvings of humanlike ape heads have been 
excavated in the Pacific Northwest (Eberhart 2001). Newspaper articles 
from the 1800s report “wild men” in such diverse geographic areas as 
Pennsylvania and California (Bord and Bord 2006). In the early 1900s, 
settlers and prospectors frequently reported seeing this creature in  
California, Washington, and Oregon (Bord and Bord 2006). There have 
been thousands of reported Bigfoot sightings in the last hundred years 
alone. And yet, no solid scientific proof of the creature exists.
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Some of the eyewitnesses are con artists, to be sure. In 2008, for 
example, two gentlemen in Georgia threw slaughterhouse leftovers and 
a gorilla suit into a meat freezer, filmed the scene, and posted the video 
on YouTube, claiming they’d found the discovery of the century. The 
hoax only lasted a few days. Worldwide scrutiny soon got to the men, 
and they admitted it was all just a prank (CNN 2008).

Other sightings cannot be dismissed so easily. They come from 
seemingly reliable and trustworthy people, such as hunters, outdoors-
men, and soldiers, quiet residents who inhabit the very forests Bigfoot 
is reported to inhabit. Their reports are so vivid and so consistent, 
Bigfoot researchers have even compiled a detailed description of the 
creature, right down to the sounds he makes and his social behavior 
(Eberhart 2001).

The evidence doesn’t end with eyewitness reports. Footprints, too 
large and square to be human, have been discovered, photographed, 
cast in plaster, and studied in detail. Hair samples of questionable origin 
have been collected. There’s even a controversial film, shot in 1967 by 
Roger Patterson and Bob Gimlin. In this film, a large ape-man (or ape-
woman, as some experts believe) walks through the forests of northern 
California. She’s even so obliging as to glance at the camera while she 
passes.

With all this so-called evidence, Bigfoot researchers should have 
no trouble proving the existence of the creature. But this proof remains 
as elusive as the creature himself. Controversy over the Patterson film’s 
authenticity rages on. DNA analysis of hair samples has, to date, been  
inconclusive. And even the best footprints somehow manage to look 
more fake than real. The most skeptical among us believe Bigfoot is 
pure myth, the subject of campfire stories and other tall tales. Others 
think the creature was real, a North American ape, perhaps, that once 
lived among early humans but long ago became extinct. Still others 
think the creature is alive and well, extremely shy, and living in remote 
areas across the United States.

Let’s say, for argument’s sake, I’m one of the believers. I’m  
convinced Bigfoot’s real. Let’s say, hypothetically speaking, I’m excited 
about the idea, so excited I just have to do something about it. I  
quit my job and head off in search of the creature. With visions of  
fame and fortune running through my head, I cash in my savings, say 
goodbye to my family, and drive away in my newly purchased vintage 
mini-bus.
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As I leave the city limits, my thoughts turn to the task ahead. 
Bigfoot exists, there’s no doubt about it. He’s out there, waiting to be 
discovered. And who better than a statistician-turned-monster-hunter to 
discover him? I’ve got scientific objectivity, some newly acquired free 
time, and a really good GPS from Sergeant Bub’s Army Surplus store. 
I’ve got only one problem. The United States is a big place, and no 
matter how much free time I have, I’m still only one person with a 
sleeping bag and a video camera. If I simply head to the nearest moun-
tains and pitch my tent, the odds of me spotting a giant ape-man are 
about the same as the odds of me winning the lottery (and I don’t play 
the lottery). No, I need to do better than put myself in the woods and 
hope for the best. But how will I do this? How will I ever prove Bigfoot 
exists?

GETTING GOOD DATA: WHY IT PAYS TO BE 
A CONTROL FREAK

It’s too late to get my job back, and my husband isn’t taking my calls, 
so it seems I have no choice but to continue my search. I decide  
I’m going to do it right. I may never find the proof I’m looking for,  
but I’ll give it my best, most scientific effort. Whatever evidence I find 
will stand up to the scrutiny of my ex-boss, my family, and all those 
newspaper reporters who’ll be pounding on my door, begging for 
interviews.

Having worked with data for nearly twenty years, I’ve learned that 
any conclusions you make are only as good as the data you use to make 
them. You may have all the statistical analysis tools in the world at your 
disposal, but without reliable data, they’re useless. For example, 
suppose you’re in the woods and you come across a large, oddly square-
shaped footprint in the mud. Before you jump to conclusions and set 
up a press conference, you should check your data. Is there a bear 
nearby that might’ve made the footprint? How about a human? Is the 
footprint deep enough to have been made by a 700-pound primate? In 
the end, you may just find that your big discovery is really nothing 
more than a hole in the mud.

What I need is a study. The purpose of any study or experiment is 
to take a bunch of data and use those data to make conclusions about 
an entire group, or population. Experimental planning and design is the 
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process of planning a study, and it includes everything from deciding 
where your data will come from to how it will be analyzed. This process 
uses a handful of techniques to reduce the likelihood that your data will 
lead you to ambiguous, inaccurate, or even dead wrong conclusions. 
Taking the time to go through this process always pays off. It makes 
your data easier to analyze and your results easier to interpret.

The process of planning a study fits into the scientific method,  
a step-by-step approach to using measurements and observations to 
answer questions about the world around you (Wilson 2012). There are 
variations in how this process is presented. I’ve broken it down into 
four steps. These steps, detailed below, are summarized in Figure 2.1.

1.  Ask the Question and Determine the Type of 
Study Needed to Answer It

A study is any data collection exercise. The purpose of any study is to 
answer a question. Is my company’s marketing campaign working? 
Does this drug work? Does Bigfoot exist? Answering this question is 
the focus of the study. Throughout the planning process, lots of ques-
tions come up, and it can be easy to lose this focus, so I recommend 
writing down the original question and referring back to it often. This 
helps prevent you from adding unnecessary variables, following side 
paths, and otherwise becoming distracted.

Once the question has been clearly articulated, it’s time to design a 
study to answer it. At one end of the spectrum, a study can be a controlled 
experiment, deliberate and structured, where researchers act like the 
ultimate control freaks, manipulating everything from the gender of their 
test subjects to the humidity in the room. Scientific studies, the kind run 

Figure 2.1.  Experimental planning and design.
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by men in white lab coats and safety goggles, are often controlled experi-
ments. At the other end of the spectrum, an observational study is simply 
the process of watching something unfold without trying to impact the 
outcome in any way. When you say “yes” to that pop-up window asking 
you to participate in an online survey, you’re probably joining an obser-
vational study. The researchers aren’t trying to manipulate you; they just 
want to record how you feel about their product.

Controlled Experiments

Controlled experiments usually produce the best data and the strongest 
conclusions. In this type of study, all variables that could impact the 
outcome of the experiment are carefully controlled or measured. When 
researchers are able to run studies this way, by tweaking variables and 
observing the outcome, they can make statements about cause and 
effect. Cause and effect is the strongest type of conclusion, taking the 
form A causes B to happen. For example, about once a week, I prove 
that hot coffee burns my tongue. I know this because on those days I 
start sipping the moment the barista hands me my drink, my tongue 
screams in pain. On those days I wait ten minutes for my coffee to cool 
down, my tongue is fine. All the other important variables in this experi-
ment are the same—me, the coffee shop, the kind of drink I order. The 
only things that change are the temperature of the coffee and the level 
of pain in my mouth.

Suppose, just for the sake of argument, I’m at Sergeant Bub’s Army 
Surplus store, staring at a wall of cameras. There are wildlife cameras, 
motion activated cameras, infrared cameras, and any other type of 
camera that might appeal to outdoor enthusiasts, wildlife watchers, and 
the hopelessly paranoid. I’m looking for the perfect motion activated 
camera, one that will capture Bigfoot with Hollywood movie-like 
clarity. I know nothing about these devices, but there are two gentlemen 
standing next to me who seem like they do. I listen in, hoping for a 
little free expert advice.

“The Motion Sensor 3000 is better’n all the others,” says one of 
the gentlemen, a man who looks like Santa Claus in camouflage. “It’s 
high def. Also has the fastest response on the market.”

“That piece of junk?” responds his friend, a dark, bony man dressed 
nearly head-to-toe in flannel. “Last one of them I had broke on me after 
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only a couple days. Naw, what we want is the BearCam A110. It’s the 
only camera worth buyin’.”

The men go back and forth a while, arguing the merits of each 
camera, and this only adds to my confusion. Which model should I 
buy? I have limited resources and can’t afford a camera that breaks. 
On the other hand, if I’m to capture Bigfoot on film, I need something 
state of the art, something that responds quickly and takes a good 
picture. I decide to design a study to pit these two cameras against  
one another. Because I’ll be able to manipulate the conditions of my 
study and measure each camera’s response, this will be a controlled 
experiment.

Observational Studies

Observational studies are those studies where the researcher cannot or 
does not manipulate any of the variables. He or she simply observes 
the outcome. It’s difficult to assign cause and effect in an observational 
study. Why? When researchers are unable to measure the impact caused 
by tweaking a single variable, there’s always the possibility another 
variable could be contributing to the result. That’s why the findings of 
observational studies are often reported as associations, not cause and 
effect. For example, consider a study linking exercise to better health, 
where researchers have recorded the exercise habits of a thousand 
people, measured their health data, and found that people who work 
out frequently have lower cholesterol, lower blood pressure, and lower 
body fat. Because researchers do not manipulate any variables, this  
is an observational study. But we know there are many things besides 
exercise that affect a person’s health: age, genetics, diet, and so on. 
These things are different for every person in the study. None of  
them can be controlled, and only a few, such as age and sex, can be 
observed. So whatever the result, it’s impossible to conclude that exer-
cise is the one and only cause of better health in this study. All the 
researchers can conclude is that the more active people tend to be more 
fit, meaning exercise is associated with but not necessarily the cause 
of better health.

There’s an important difference between causation and association, 
and yet the two concepts are often confused. The news is full of conclu-
sions made by well-meaning people who take an association and turn 
it into cause and effect, and the consequences can be significant. I refer 
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you to Freakonomics: A Rogue Economist Explores the Hidden Side of 
Everything (Levitt and Dubner 2009) for some examples of the impact 
such confusion has had on our society over the past forty years.

Back to Sergeant Bub’s Army Surplus store, where I’m standing in 
front of a wall of cameras, wondering which brand to buy (hypotheti-
cally speaking, of course). Listening to Santa Claus and Mr. Flannel 
argue over which is the best camera has given me an idea. Rather than 
running a controlled experiment and testing the different cameras 
myself, I might conduct a survey of Sergeant Bub’s customers. On this 
survey I’d ask questions about the reliability, response time, and picture 
quality of the different cameras. I can’t manipulate important variables 
such as the customers who stop by the store that day, which cameras 
those customers have used, and how they’ve used them. I can only take 
down opinions, all the while collecting data about who’s buying what 
product and why. This study, a customer survey, is an observational 
study.

2.  Specify Your Population and the Effect You Want 
to Measure

All studies draw data from a population. A population is the whole 
collection of people, places, or things under study. It’s the group you 
want to analyze, to make conclusions about. You do this by collecting 
a sample of the population, in other words, a subset of the whole. Think 
of a controlled experiment in which I pit two different motion activated 
camera models against one another, one being the Motion Sensor 3000 
and the other being the BearCam A110. The population consists of all 
Motion Sensor 3000 and BearCam A110 cameras. My sample includes 
only those cameras I’ll get my hands on, the ones I’ll test, the ones that 
will be representing the entire population.

Choosing and organizing a sample is a crucial part of the experi-
mental design process. Statistically speaking, the best type of sample 
is called a random sample. A random sample is a subset of the entire 
population, chosen so each member is equally likely to be picked. For 
example, a random sample of Motion Sensor 3000 cameras might 
consist of ten such devices bought at ten randomly selected stores 
across town. Random sampling is the best way to guarantee you’ve 
chosen objectively, without personal preference or bias. Why is this 
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important? Suppose Sergeant Bub has only two cameras for me to test. 
Both are from the back room, and both are customer returns. Because 
these cameras were returned to the store, I might expect one or both of 
them to be less than perfect, slightly flawed, or downright defective. If 
this is the case, then the performance of these cameras in my head-to-
head comparison won’t necessarily be typical of all Motion Sensor 
3000 devices. In other words, my conclusions won’t apply to the whole 
population.

Of course, this is the real world and pure random samples aren’t 
always possible. Practical or ethical limitations often prevent us from 
this ideal. For example, to test a camera’s sturdiness, I can’t simply pull 
it from Sergeant Bub’s shelf and throw it to the ground. Nor can I pick 
customers at random and force them to participate in my survey. In 
both cases, I need to get permission first. Because of these difficulties, 
we simply do the best we can, picking random samples whenever  
possible, and pointing out the limitations of our study when it isn’t 
possible.

The effect is the outcome you want to observe. It should be some-
thing you can measure and analyze, and it should directly relate to the 
question in Step 1. In the head-to-head comparison of motion activated 
cameras, I want to pick a sturdy device that will be sure to capture any 
giant humanoids in its field of view. In this case, the effects for my 
study might include the time it takes for the device to respond to motion 
and the number of drops it takes before the device breaks. If, instead 
of comparing the cameras directly, I choose to do a customer survey, 
the effect might be a person’s perceived reliability of each camera, as 
measured on a scale from one to five.

3.  List All Relevant Factors and Decide What to Do 
with Them

Variables, or factors, include anything that can impact the results 
of an experiment, anything that can affect your effect, as it were. 
Factors fall into two basic categories: controllable and uncontrollable. 
Controllable factors are those variables you can manipulate in a 
study, those loved by scientists and control freaks alike. For example, 
I might want to test the response time of different motion activated 
cameras for different-sized objects to see which works best for a giant 
ape-man. The objects I put in front of the cameras while testing them 
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are controllable factors. Uncontrollable factors are those variables you 
cannot manipulate. If I conduct my camera study outside, the weather 
is an uncontrollable factor. I can’t change the cloud cover or the wind, 
but low sunlight and turbulent air movement could definitely have an 
impact on the performance of a motion-activated camera.

How do scientists deal with these different types of factors? Con-
trollable factors are either systematically manipulated, so their impact 
can be measured, or they’re held constant, so they don’t contribute to 
changes in the effect being studied. Uncontrollable factors are observed 
whenever possible, so their impact can be taken into account during 
data analysis. In either case, it’s important to consider all factors when 
planning a study. Any factor you don’t account for can become a con-
founding factor. A confounding factor is any variable that confuses the 
conclusions of your study, or makes them ambiguous. For example, 
suppose I go to the vacant lot behind Sergeant Bub’s and set up my 
camera test. On the first day, I test five Motion Sensor 3000 cameras, 
carefully measuring the response time of each. On the second day, I 
repeat the test for five BearCam A110 cameras. I’ve got my data, there’s 
only one problem. The first day was bright and sunny. The second day 
was cloudy and windy. This means all of the Motion Sensor 3000 
models were tested in one set of weather conditions, while all of the 
BearCam A110 cameras were tested in another. Weather, particularly 
poor light and wind, might impact a motion camera’s response time, 
so whatever differences I observed could have been caused not by dif-
ferences between the cameras themselves, but by the varying weather 
conditions. In other words, weather is a confounding factor in this study 
because it adds confusion to my results.

Confounding factors can really screw up an otherwise perfectly 
good statistical analysis. They lead to studies with no useful conclu-
sions. They leave you standing in front of your boss, saying things  
like, “The upward trend in sunglasses sales could be due to our new 
marketing campaign, but it could also be due to the hot and sunny 
summer we’ve had. Since we didn’t track sales last winter when it was 
cloudy, there’s no way to tell.” Fortunately, there are a variety of tech-
niques that have been developed to minimize the chances this will 
happen.

Replication is the process of taking more than one observation or 
measurement. In the motion-activated camera experiment, this means 
more than one camera of each model should be tested. In the customer 
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survey, it means opinions from more than one customer should be col-
lected. Replication helps eliminate negative effects of uncontrollable 
factors, because it keeps us from getting fooled by a single, unusual 
outcome. As you’ll see in future chapters, replication also adds cer-
tainty to the results a study produces.

In the same way choosing a random sample from a population elimi-
nates biases in your results, random sampling eliminates biases due to 
how you collect your data. In random sampling, members of a sample 
are assigned a group or position at random. For example, to eliminate 
possible weather changes as a confounding factor in my camera com-
parison, I might test cameras in a random order, making sure to mix up 
the order in which the Motion Sensor 3000 and BearCam A110 are 
evaluated. Like replication, random sampling is an effective way to 
eliminate negative effects of uncontrollable factors.

Although it’s a little more complicated than the first two tech-
niques, blocking is a powerful way to eliminate confounding factors. 
Blocking is the process of dividing a sample into one or more similar 
groups, or blocks, so that samples in each block have certain factors in 
common. This technique is a great way to gain a little control over an 
experiment with lots of uncontrollable factors. For example, suppose I 
decide to test the different cameras under different lighting conditions 
to see how well they perform during the night and day. I might split 
them into two blocks, one to be tested at noon and the other to be tested 
at midnight. Each block should contain about the same number of both 
models. This way, each type of camera will be exposed to the same 
conditions throughout the course of the study, eliminating the light level 
as a potential confounding factor.

4.  Make a Data Analysis Plan

It may seem strange to talk about analyzing data before it’s even been 
collected, but this is the time to think about it. As you’ll see in follow-
ing chapters, different types of questions are well-suited to different 
types of statistical analyses. Each type of statistical analysis has its own 
requirements on the data needed to form a conclusion. By spending a 
little time visualizing how you will analyze the data and what form 
your results will take, you can go back through the first three steps of 
the experimental planning process to make sure you block, control, or 
observe all of the relevant variables in your study.
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I like to start my data analysis plan by imagining a single chart or 
table that summarizes all of my findings, that one winning slide that 
impresses my boss and gets me a big promotion. I think through the 
data analysis process to get me to that magical slide. For example, 
hypothetically speaking, if I were planning a study to test two different 
motion activated cameras, I’d think about a single summary slide that 
would convey all my findings to my boss, a man who likes small words 
and very few bullet points. In this case, the winning slide might be a 
table comparing the Motion Sensor 3000 to the BearCam A110 in two 
environments: utter darkness and full sunlight. However, it wouldn’t 
be enough to assume that it’s completely dark at midnight and com-
pletely sunny at noon. A full moon or a rainstorm could change this. 
So, I’d take this opportunity to add one more variable to the data col-
lection plan, the amount of light observed during the testing times.

FOOTPRINTS, FUR, AND A LIFE-CHANGING 
FILM

According to legend, Bigfoot is big, shaggy, and smells like a skunk 
that’s been rolling in rotten meat. He looks like an ape but walks upright 
like a human. He likes to screech and whistle during the night. Occa-
sionally, he throws rocks at passing humans. Finding such a creature 
ought to be a breeze, I figure, I just need to know exactly where to look.

I start narrowing down my search with step one of the experimental 
planning process, and I start by articulating my question. I stay away 
from philosophical questions like “Does the creature exist?” because 
unless I find the proof I’m looking for, there’s no way to answer this 
question with any certainty. Instead, I limit myself to something con-
crete and measurable, something based on any suspicious evidence  
I might find, something like “Can humans and known animals be 
excluded as the source of any footprints, fur, or film footage I collect?” 
Since my search will take place out in a forest where I can’t manipulate 
anything other than my own campfire, this will be an observational 
study.

Bigfoot’s been spotted in mountain forests throughout the United 
States. If I had unlimited time and resources, I could select a random 
sample of mountain forests and search every one of them. However, 
I’m only one person and there are a lot of mountains in the country. So 
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before I select my sample, I’ll narrow my search with some background 
research. Fortunately, the Bigfoot Field Researchers Organization 
(BFRO) has done most of this research for me. The BFRO is a group 
of people devoted, in part, to investigating and documenting Bigfoot 
sightings around the country (Bigfoot Field Researchers Organization 
2012). Every year, they receive hundreds of reports of Bigfoot encoun-
ters. They investigate each report, interview witnesses, and collect any 
available evidence. Those reports that pass a sniff test for hoaxes and 
pranks are posted on the organization’s website, conveniently catego-
rized by state and county.

According to bfro.net, the West Coast is the best place to conduct 
my search. As of this writing, California, Oregon, and Washington have 
seen over 1,000 unexplained, Bigfoot-like encounters since official 
record keeping began in 1995. Washington alone has had over half of 
these encounters. So, that’s where I’m headed, to the land of rain, great 
coffee, and seven foot tall apelike creatures who like to lob boulders 
at tourists.

Washington has thirty-nine counties, some with no reported Bigfoot 
sightings, some with over fifty. I could use the number of sightings to 
pinpoint the location of my search, but aside from being a big state, 
Washington is also a divided state. Most of the population is concen-
trated in the three counties around the Seattle area. According to bfro.
net, most of the Bigfoot-like encounters have occurred in Pierce County, 
an area that includes part of Seattle and Tacoma. I don’t doubt all those 
eyewitnesses who swear the creature is living among the strip malls 
and forested neighborhoods surrounding the city, but if he were really 
there, it seems someone would’ve gotten proof by now. For my money, 
I’d rather search an area with an unusually large number of sightings 
compared to the population size. Skamania County, near Mount St. 
Helens volcano, is just such an area. With a little over 11,000 people 
(U.S. Census Bureau, Population Division, 2010 estimate) and more 
than 50 sightings since 1995 (bfro.net), this county sees five Bigfoot-
like encounters for every thousand residents, more than any other area 
in the state.

Skamania County is nearly 1,700 square miles of small towns and 
wilderness. That’s still a lot of ground to cover, but much less than the 
entire United States. For my study, I’ll sample this area. Using my GPS, 
I’ll choose wilderness locations at random and search them one by one 
until I find the creature or until my money runs out.

http://bfro.net
http://bfro.net
http://bfro.net
http://bfro.net
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A seven-foot-tall shaggy beast who screeches and stinks up the 
forest ought to leave an abundance of evidence behind. My proof could 
include film; recordings of strange animal sounds; plaster casts of 
abnormally large, square footprints; and unidentifiable brown fur. These 
will be my effects, the variables I’m looking for. Fortunately, I’ve 
already bought all the equipment I need to gather the data: thermal 
cameras, motion activated cameras, and tape recorders to capture suspi-
cious sights and sounds, plaster of Paris for casting footprints, and 
evidence collection jars for anything else I might find. I depleted  
my savings on as many of these things as I could afford, hoping to 
sprinkle the forest with replicate devices in order to increase my odds 
of success.

There are probably dozens of potential confounding factors in a 
study like this. I can think of two big ones: humans and hoaxes. First, 
there could be a human afoot in the forest, maybe a large, hairy lum-
berjack. If I’m not careful, I could confuse this guy’s footprint or hair 
with Bigfoot’s. To minimize the effect of this factor, human activity, 
I’ll choose to limit my search to the most remote areas of Skamania 
County, places humans normally don’t go. I’ll also limit my study to a 
quiet time of year, early spring maybe, after the snowmobilers have 
gone but before the campers arrive, when all the animals are venturing 
away from their nests, caves, and dens to enjoy the spring weather.

I also need to think about a possible hoax. I’ll be conducting my 
study in remote forests, where I won’t likely run across any humans, 
much less ones pulling a prank, but if the locals learn of my expedition, 
one of them might decide to have a little fun with me, wandering 
through the forest in a giant ape-suit just to get me all worked up. To 
minimize the impact of this factor, what I call the “dupe-the-tourist 
factor,” I’ll keep my little study a secret, at least until I’ve uncovered 
the proof I need.

Finally, assuming Bigfoot really does exist out there, my very pres-
ence may impact my ability to find proof of the creature. After all, if 
Bigfoot came storming into my house and plunked himself down on 
my sofa, I’d probably find it difficult to go about my life as if nothing 
happened. Likewise, if I pitch a tent in the middle of Bigfoot territory 
and start poking around his home, the creature is likely to behave a 
little differently from how he normally would. So if I want to capture 
the creature on film, I need to plant the cameras and tape recorders in 
random locations, and leave. I’ll return every few days to check up on 
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my equipment and review the footage I’ve collected. If I find a suspi-
cious video or an unexplainable screeching noise on my devices, I’ll 
scour the immediate area for physical evidence: fur, footprints, scat, 
and so on.

The last step in the planning process, developing a data analysis 
plan, is pretty straightforward. For example, I imagine myself in front 
of the reporters, holding a vial of not-quite-human and not-quite-ape 
hair, announcing my discovery to the world. I see doubt on everyone’s 
faces, and one reporter asks how I know this belongs to Bigfoot and 
not a bear. Of course, I’m convinced. I’ve reviewed the evidence with 
an objective, critical eye. Still, it’s a good question, and one I won’t be 
able to answer unless I have confirmation from an independent hair 
expert. So, I take this opportunity not to include another variable in my 
data collection process, but to set aside some of my remaining budget 
for expert forensic analysis of any evidence I find. This will add cer-
tainty to my conclusions.

One solid piece of evidence is all I need to restore my reputation 
and make amends with my family. I have a solid experimental plan, 
complete with a well-formulated question, a sampling scheme, and a 
method for eliminating potential confounding factors. I know where I 
need to go and what I need to do. All that remains is for me to cash in 
on the proof I know is out there, the proof I’m searching for, the proof 
I’m going to find.

Hypothetically speaking, of course.
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Dear Mom,
I hope you’re doing well. I haven’t heard from you in over two weeks, 
and I worry you’re still mad at me about the incident. I’d prefer to talk 
to you in person, but you don’t seem to be getting my phone calls and 
you didn’t answer the door when I visited. So, I must resort to explain-
ing myself in an email.

First, when I dropped by your house with my new book project, I 
had no idea it would cause so much trouble. It’s only a statistics text, 
after all. Yes, I probably should’ve called ahead, but in my defense, you 
asked me to bring a copy over some time. How was I to know you’d be 
hosting a party for the Shady Oaks Estates Ladies Club when I got 
there? And how was I to know you’d immediately start showing the 
book to all your guests before you even looked at it yourself?
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Second, I agree “Your mama’s so heavy . . .” jokes are rude. That’s 
kind of the point. But please believe me, none of the insults in the book 
were meant to refer to you or any of your friends, especially not Marta.

Third, there’s no need to wash out my mouth with soap. Yes, some 
of the jokes had foul language, rude references, and politically incor-
rect words. But I’ve removed the worst offenders and I hope you’ll find 
the revised chapter much less objectionable.

Maybe you’re right and insults like these have no place in a legiti-
mate textbook. But you see, descriptive statistics are a lot like adjec-
tives. An adjective, as you know, is a word that describes a person, 
place, or thing. A descriptive statistic is a number that describes a 
dataset. As you pointed out, “Your mama’s so heavy . . .” jokes are full 
of colorful adjectives. What better way to illustrate descriptive statistics 
than to use them to answer the question, “How heavy is she?”

I sincerely apologize for the ruckus this chapter caused at your last 
party. I never meant to offend anyone. Please convey this apology to all 
your friends. Also, tell Marta the joke about the lady so heavy she deep 
fries her toothpaste was not a reference to her. Call me sometime.

Sincerely,
Your Loving Daughter

A recent Google search for “your mama” jokes came back with more 
than two million hits. Two million websites insulting “your mama.” 
(And when I say “your mama,” I don’t mean your mom, the woman 
who gave birth to you and raised you to be the fine citizen you are 
today. I mean that other guy’s mom. You know the one.) Even 
discounting duplicates, that’s a lot of jokes, a lot of descriptions of this 
unfortunately-sized woman. Take these three jokes, for example:

Your mama’s so heavy, she shows up on radar.
Your mama’s so heavy, she’s been zoned for commercial development.
Your mama’s so heavy, her belt size is Equator.1

These three descriptions paint very different pictures, and if you 
were to use these descriptions to estimate the woman’s size, you’d  
most likely come up with three very different answers. In other words, 
you’d have variation in your data. Virtually all real-world datasets have 

1  Excerpts from Yo’ Mama Is So. . . by Hugh Payne © 2007 used with the permission of 
Black Dog & Leventhal Publishers.
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variation, or differences between observations. So how do you describe  
a dataset in the presence of variation? You use descriptive statistics. 
Descriptive statistics are numbers that summarize properties of a 
dataset. For example, suppose I had ten insults describing “your mama,” 
a woman whom I’d never laid eyes on. I might take each of those insults 
and use it to calculate the weight and waistline of this woman. These 
calculated values would make up my dataset, and from them, I might 
be able to say the following:

“Your mama” is typically estimated to weigh 3,182 lbs.
Her belt size falls somewhere between Wide Load and Equator.
There’s an 80% chance she drives a spandex car.

The typical weight. The range of her belt size. The likelihood she’s 
big enough to require a car made of spandex. All of these values are 
descriptive statistics that tell you something about the woman whose 
size is in question.

Descriptive statistics are estimates, values calculated from a sample, 
values that approximate some property of the entire population. The 
average is a commonly used estimate. It’s calculated from a sample of 
data and it approximates the typical value of a population. More on this 
descriptive statistic later. Life in the information age is full of descrip-
tive statistics. Whenever a drug commercial warns its product might 
cause spontaneous bleeding, or a cable newscaster declares the economy 
is on life support, those statements are based on descriptive statistics. 
Whenever you search for a website, participate in a Facebook poll, or 
submit a customer review of your new cell phone, the information you 
provide gets combined with others’ into a dataset, a dataset that’s even-
tually summarized by someone—a search engine company, a friend, a 
marketing department. In short, wherever you’ve got data, you’ve got 
descriptive statistics, and they can be used to summarize virtually any-
thing. The likelihood a person will search “funky chicken” on the 
Internet. The average number of whoopee cushions sold in stores last 
quarter. Or, as you’ll see in this chapter, the typical belt size of a woman 
who fits the description of “your mama.”

THEY MAMA

With over a half million web pages devoted to “your mama,” gathering 
jokes is easy. However, it would take years for me to collect every insult 
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in the world, especially considering the fact that new ones are con-
stantly being created. Fortunately, I don’t need every insult to describe 
this demographic, a group of ladies I’ll call “they mama.” I only need 
a sample, a subset of insults that represents the whole population of all 
“your mama” jokes in the world. As mentioned in Chapter 2, the most 
objective type of sample is a random sample, where every insult has 
the same likelihood of being included. Random sampling is especially 
important for a case study such as this, where my own personal joke 
preferences could cause me to pick certain insults over others, resulting 
in a skewed picture of “they mama.” To collect my sample, I went to 
two of the biggest user-contributed joke websites, Aha! Jokes and Yo’ 
Mama Jokes Galore, and chose two hundred “your mama so heavy” 
jokes at random.

Like the “your mama” who weighs herself on the Richter scale, the 
difference between ladies in “they mama” is huge. For example, the 
woman who needs to grease the door when she enters the house is petite 
compared to the one who’s been named Miss Arizona . . . Class Battle-
ship. Miss Arizona Class Battleship is tiny compared to the woman who 
influences the tides. With so much variation, I need descriptive statistics 
to give me an idea of just how big the ladies in this demographic are. 
But first, I need to turn these colorful yet vague insults into data.

QUALITATIVE VERSUS QUANTITATIVE DATA

All data fall into two categories: qualitative and quantitative. Qualita-
tive observations or data are typically categories, groups or character-
istics. Hair color and favorite foods are examples of qualitative 
observations. Quantitative observations or data are numerical values. 
Weight and belt size are examples of quantitative observations.

These two types of data are generally treated differently. The 
reason? Plain and simple arithmetic. Qualitative observations cannot 
be sorted into a numerical order. For example, suppose you’re analyz-
ing the hair color of a group of ladies. You might take each lady and 
categorize her into one of a few groups: blonde, brown, red, black, and 
gray. The color brown isn’t larger or smaller than red. It’s just different. 
And without a mathematical relationship between observations, we’re 
somewhat limited in our ability to mathematically summarize qualita-
tive data. Quantitative observations, on the other hand, are meaningful 
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numerical values and so they can be sorted. If you’re weighing the 
ladies in “they mama,” for example, 4,500 lbs is heavier than 4,400 lbs, 
which is heavier than 4,350 lbs, and so on. This mathematical ordering 
allows us to use the full arsenal of arithmetic, algebra, and even calcu-
lus to summarize quantitative data. I’ll describe “they mama” both 
ways, starting with the simpler of the two approaches.

Qualitative Analysis

After reading over my list of insults gathered from the Internet, I began 
to notice a pattern. While the details of the different jokes vary, many 
of them compare “your mama’s” size to the same small number of 
objects—cars, whales, buildings, and so on. These comparisons give 
me a convenient way to categorize the insults, turning a bunch of one 
liners into qualitative data. After poring over the list a few more times, 
I settled on seven categories of ladies: (1) Unimpressive, (2) Large 
Mammals, (3) Planes, Trains, and Automobiles, (4) Buildings, (5) Geo-
logical and Geographical Phenomena, (6) Astronomical Objects, and 
(7) Who Knows? The first category, Unimpressive, includes women 
whose size, while large, is nothing particularly special. The sizes of the 
ladies in groups two through six are implied by the category labels and 
should be obvious. The last category, Who Knows?, is a catch-all group 
of insults without any obvious, concrete reference. Many of these 
insults have something to do with the woman’s eating habits or clothing 
challenges. Examples of jokes falling into each category are listed in 
Figure 3.1.

You might wonder why I didn’t make planes a separate group from 
trains and automobiles, or why I didn’t separate the women who cause 
geological phenomena from the women who take up large geographic 
areas. The answer is simple. I made a judgment call. I categorized the 
ladies this way because it makes sense to me. If you prefer a different 
grouping, I urge you to find your own jokes and repeat the following 
analysis for yourself.

Once all the ladies in “they mama” have been categorized, I have 
a set of qualitative observations to work with. Like all qualitative data, 
these have no clear mathematical ordering, and so they cannot be ana-
lyzed by any method that arithmetically compares different observa-
tions. So, I’ll do what people usually do with data like these. I’ll start 
with something called a frequency distribution.
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Figure 3.1.  “Your mama’s so heavy . . .”

Category Example

Unimpressive …when she steps on the scale, it
says, “To be continued…”.  

Large Mammals …she got baptized at SeaWorld. 

Planes, Trains, and Automobiles …she shows up on radar. 

Buildings …she’s been zoned for commercial
development.

Geographical and Geological
Phenomena 

…when she went to the beach, she
caused a tsunami.

Astronomical Objects …she wears an asteroid belt.

Who Knows? …she deep fries her toothpaste. 

The frequency distribution is a common way to summarize a set 
of observations. For qualitative data, the frequency distribution is just 
a list of counts—the number of observations falling into each category. 
Figure 3.2 lists the frequency distribution for “they mama.” In the 
figure, the relative frequency is also included. The relative frequency 
represents the fraction (or alternatively, percentage) of all the observa-
tions falling into each category. This fraction is the ratio of the number 
of counts in each category to the total number of observations. The 
percentage is just the fraction multiplied by 100.

The frequency distribution in Figure 3.2 shows the relative popular-
ity of different types of insults. For example, the smallest women in 
“they mama” are Unimpressive. Twenty-seven, or 14 percent, of the 
ladies fall into this group. On the other end of the body mass spectrum 
sits the Astronomical Objects category. This category may contain the 
largest women, but with only 4% of the insults, it’s the least popular. 
The categories Large Mammals to Astronomical Objects include those 
women who are both impossibly large and compared to something 
concrete. Adding up the frequencies of these categories tells us these 
ladies make up 52% of all the jokes.
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With relatively few observations and relatively few categories, 
tables like Figure 3.2 do a fair job of illustrating the frequency distribu-
tion. However, nothing compares to a good graph. Bar charts are par-
ticularly useful for frequency distributions. A bar chart displays each 
category as a box whose height represents the number of observations 
in that category. Figure 3.3 shows a bar chart of the “your mama” 
insults, plotted as the relative frequency in terms of percentage.

A quick glance at Figure 3.3 tells us a lot about these data. The 
mode, the most popular category in “they mama,” is Who Knows? This 
category contains almost twice as many as any other. Astronomical 
Objects, with a relative frequency ten times lower than Who Knows?, 
is the least popular. The categories Unimpressive; Planes, Trains, and 
Automobiles; Buildings; and Geographical and Geological Phenomena 
are comparable, each having a relative frequency between 10 and 20%.

Aside from the mode, which tells you what category is most typical 
in your dataset, relative frequencies are the most common descriptive 
statistics used in the analysis of qualitative data. For example, the 
batting average of a baseball player is a relative frequency, the number 
of base hits divided by the total number of times at bat. The results of 

Figure 3.2.  Frequency distribution of “they mama.”

Category Counts (Number of Insults) Relative Frequency

Unimpressive

Large Mammals

Planes, Trains, and
Automobiles 

Buildings

Geographical and
Geological Phenomena 

Astronomical Objects

Who Knows?

Total

27

8

26

21

41

7

70

200

0.14

0.04

0.13

0.11

0.21

0.04

0.35

1.0
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political polls are typically relative frequencies, expressed as a percent-
age of people who approve of a particular candidate. Relative frequen-
cies are particularly useful for calculating probabilities. This topic will 
be discussed more in the following chapter and throughout the rest of 
the book.

Quantitative Analysis

The frequency distribution in Figure 3.3 provides us with a good general 
summary of “they mama,” but it doesn’t really answer the question at 
hand. In order to determine exactly how heavy “your mama” is, I need 
more precise information, measurements that indicate her belt size or 
her weight. In other words, I need quantitative data. The kind of numer-
ical values that’ll only be possible with a little creative calculation.

For example, imagine a woman who’s so large she drives a spandex 
car. What kind of car is it? Is it a spandex Corolla or a spandex Sub-
urban? The answer makes a difference. According to cars.com, a Toyota 
Corolla is about 69 inches wide, where a Chevy Suburban measures in 
at roughly 79 inches wide. That’s a difference of 10 inches in width, 

Figure 3.3.  “They mama” frequency distribution: how heavy is she?
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which translates to a 30-inch difference in the belt size of a woman 
who fills such a car.

Many of my insults are like this one, leaving much room for varia-
tion in the measurement. I could go through the jokes one by one, 
estimating a range of sizes for each and folding them together into one 
grand dataset. However, this would be a tedious process with many 
details to explain. So, rather than becoming distracted by creative cal-
culations, I’ll pick one insult and conduct a quantitative analysis on 
that. Here it is: “Your mama’s so heavy she has her own zip code.” 
Let’s say the U.S. Postal Service assigns zip codes to ladies based on 
the size of their waistline. In other words, assume “your mama’s” 
waistline takes up an area roughly the size of a typical zip code region. 
Exactly how big is this area?

The U.S. Census Bureau spends millions of dollars every year 
keeping track of the U.S. population—demographics, number of houses, 
income, number of children, and yes, the land area of every zip code 
in the country. I’m pretty sure the government never expected the data 
to be used to measure “your mama’s” waistline, but it makes these data 
publicly available in any case. I should mention there’s something 
special about these zip code areas. Where most datasets are merely 
samples, or subsets of the entire population, these data are complete, 
including every zip code in the country. In other words, I don’t just 
have a sample here. I have the entire population.

As of this writing, the 2010 data are not yet available, but the 2000 
Census zip code tabulation areas (ZCTAs) can be downloaded from 
www.census.gov. There are a little over 32,000 values in this dataset, 
each one representing the land area, in square miles, of a U.S. zip code. 
Unless you’re squeamish about lots of values, I encourage you to down-
load these data and repeat some of the following analysis yourself.

THE DESCRIPTIVE POWER OF STATISTICS

Imagine we’re outside on a sunny day. You’re blindfolded and I’m 
trying to describe a cloud in the sky. I might tell you where it is, whether 
high in the sky or near the horizon. I might tell you how big the cloud 
is, whether it takes up one tiny quadrant or looms over the entire land-
scape. I also might describe its texture, where it’s thick and dense and 
where it’s light and transparent. These three characteristics, location, 
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size, and texture, would help you form a more detailed picture of the 
cloud in your mind. These same characteristics are the ones most com-
monly used to describe quantitative observations, a data cloud, if you 
will. In statistics jargon, the location is often called center location, the 
size is often referred to as variation, and the texture is often represented 
with the frequency distribution. I’ll start by describing the last of these 
characteristics first.

Frequency Distributions and Histograms

The frequency distribution measures the relative popularity of every 
category in a qualitative dataset. For a quantitative dataset, it measures 
the texture of the data cloud, where the cloud is thick and dense with 
many observations, and where it is thin with few or none. Constructing 
the frequency distribution for quantitative data is a lot like the process 
for qualitative data, where observations in each category are tabulated 
and then plotted using a bar chart. In fact, for discrete quantitative 
data—observations that can only take on distinct values like integers 
from one to ten—the process is exactly the same. You simply count up 
the number of ones, twos, threes, and so on, and then list or graph the 
results. The differences arise when you have continuous quantitative 
data—values that take on all possible numbers in some specified range. 
Why? With continuous values, you can spend your entire life counting 
observations at any given value, but there will always be another value 
to count. For example, if your data can take on any value between 50 
and 60 and you count the number of 56s and 57s, you still have 56.1, 
56.2, 56.5, and lots of others. If you then count the number of 56.1s, 
56.2s, and so on, you still have 56.15, 56.23, 57.28, and lots of others. 
You can stretch the decimal places all you want and there will still be 
more numbers to count. Infinitely many of them, in fact. Try plotting 
a bar graph with infinitely many categories on the x-axis. Go ahead. 
I’ll wait.

For quantitative data, the frequency distribution is typically calcu-
lated by splitting the observations into discrete bins, or ranges of values, 
and counting the number of observations falling into each bin. For 
example, if you have observations between 50 and 60, you might con-
struct ten bins, one for observations falling between 50 and 51, one for 
observations falling between 51 and 52, and so on. By binning the data 
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in this way, you can tabulate frequencies and relative frequencies for 
each bin and then list or graph the results.

I’ve said this before, but it’s worth repeating. The best way look at 
a large amount of data is with a graph. A graph helps you visualize your 
observations and it can be incredibly helpful in identifying outliers, 
extreme or unusual values that can impact your results. You’ve already 
seen how a bar graph can be used to visualize the frequency distribution 
for qualitative data. The same type of graph can be used to visualize 
the frequency distribution for quantitative data. This type of graph is 
so popular, it has its own name: a histogram.

When plotting a histogram, deciding how to bin the data is a bit  
of an art, but some guidelines are available. Plotting programs such as 
Excel divide the range into N  equal-size bins (Microsoft Corporation 
2012), but the best choice often depends more on what makes the most 
sense for your specific problem than what any spreadsheet software 
recommends. In general, bins are calculated from the maximum, the 
largest data value, and the minimum, the smallest data value, by divid-
ing this range into equal length intervals. The number of bins you use 
can dramatically change the shape of the histogram, especially when 
your sample is small and you have only a few observations per bin. I 
recommend experimenting with different bin sizes. It’ll help you decide 
if the shape you’re seeing reflects the true nature of your data or simply 
your choice of bin widths.

For the zip code tabulation areas, the minimum area is 0.0019 
square miles, about the size of a large building, and the maximum is 
5,497 square miles, about the size of Connecticut. With just over 32,000 
values, the square root criterion suggests 179 bins for this histogram, 
each with a width of about 31 square miles. However, this choice of 
bin number produces a fairly useless histogram, with over 90% of all 
zip code areas falling into the first two bins. Such a graph, with only 
two visible bars and no hints as to the shape of the distribution, doesn’t 
really teach us anything. Instead, I’ll increase the number of bins to 
1,500. This breaks up the first few bins, making it easier to see what 
happens at the low end of the zip code areas. This histogram is plotted 
in Figure 3.4.

If you’ve been in your statistics class for more than a few weeks, 
you’ve probably heard about the bell-shaped frequency distribution. 
Illustrated in Figure 3.5, the bell-shaped distribution is the poster child 
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Figure 3.4.  Frequency distribution of zip code tabulation areas.

Figure 3.5.  An illustration of the bell-shaped frequency distribution.
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of all frequency distributions, with its central peak and gently sloping, 
symmetric sides. Many datasets have a bell-shaped distribution. The 
zip code dataset isn’t one of them. There are a large number of very 
small zip code areas, less than about 16 square miles. Beyond that, the 
relative frequencies taper off slowly, from 16 all the way out to 5497 
square miles (although the histogram has been cut off at 700 square 
miles so you can see details of the smaller zip code areas). It’s like a 
cloud that’s thick and dense on one end, and thin at the other. Because 
the histogram looks like it’s been stretched to the right, this frequency 
distribution shape is called right-skewed. Right-skewed distributions 
are fairly common when it comes to measuring counts, distances, and 
areas. There’s also a left-skewed distribution, whose histogram looks 
like it’s been stretched to the left, but those are less common.

At this point, you might be asking yourself why you should care 
about the shape of the histogram. After all, we’re only trying to estimate 
the typical belt size of a woman who has her own zip code. Does it 
really matter whether the data are symmetric, left-skewed, or right-
skewed? As you’ll see in the following section, it does.

Central Location

The term central location refers to the center of a data cloud, in other 
words, the spot around which all the data values are clustered. Two 
descriptive statistics are commonly used to measure central location: 
the sample mean and the median. Of those two, the sample mean, or 
the average, is most common.

Sample Mean (Average)

Even if you’ve never had a single teacher utter the word “statistics” in 
class, you’ve probably run across the average. Calculated by adding all 
the data values together and dividing by the number you have, the 
average pinpoints the arithmetic center of a dataset.

For measurement values x1, x2, . . . , xN, the average is

	 x
x x x

N
N= + + +1 2 � .

For example, the average of the four numbers 4, 5, 5, and 6 is 
(4 + 5 + 5 + 6)/4 = 5.
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Median

The median is another common way to measure the central location 
of a data cloud. However, unlike the average, the median isn’t calcu-
lated from an arithmetic formula. Rather, it’s the midpoint, or middle 
measurement value. To calculate the median, sort your list of numbers 
from smallest to largest. If there’s an odd number of values in the list, 
pick the one in the middle. If there’s an even number, then average the 
two middle values. For example, the median of 4, 5, 5, and 6 is the 
average of the two middle numbers, 5 and 5, which is, of course, 5.

If a frequency distribution is symmetric, meaning the two halves 
of the histogram are mirror images of one another, the large values will 
balance the small values both arithmetically and in terms of the middle 
position. In a case like this, both the average and median will lie in the 
middle of the histogram, very close to one another. The sample mean 
and median of the bell-shaped data shown in Figure 3.5, for example, 
are both ten, the center position on the histogram. On the other hand, 
if the frequency distribution isn’t symmetric, all bets are off. Extreme 
values and nonsymmetric bumps in a dataset can cause these two 
descriptive statistics to be quite different. The sample mean of the zip 
code areas is 85.8 square miles. The median, 37.7 square miles, is less 
than half that value.

Why should the sample mean and median be so different? These 
two statistics both measure the center of a data cloud, but they do it in 
two very different ways. Think of the numbers 4, 5, and 6, for example. 
The average of these three values is (4 + 5 + 6)/3 = 5. The median, the 
middle number, is also five. Now stretch the six to a nine, giving the 
values 4, 5, and 9. The average of these numbers has increased to 
(4 + 5 + 9)/3 = 6, but the median is still five. Stretch the 9 to a 12 and 
the average increases to 7. The median? Still 5. The average takes into 
account all the values in the dataset, even the very large or small ones. 
The median chooses the middle value, regardless of what’s happening 
at the extremes. In other words, the mean is impacted by big or small 
values, while the median isn’t nearly as much.

According to the sample mean and the median of the zip code  
tabulation areas, a typical “your mama’s” waistline consumes anywhere 
from about 38 square miles (the median) to about 86 square miles  
(the sample mean). In other words, she takes up more space than 
Newark, New Jersey, and less than Amarillo, Texas. Which one is a 
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better indicator of the center location of this data cloud? As you’ll see 
in coming chapters, the sample mean is more common and, in many 
ways, easier to work with when doing data analysis. However, for 
purely descriptive purposes, it’s a good idea to calculate both, because 
comparing the mean and median can tell you a lot about your data. If 
the two values agree with one another, chances are good you’re looking 
at a nicely formed, symmetric frequency distribution. When they don’t, 
you probably want to dive a little deeper into the data. Plot a histogram. 
Look at the extreme values. You might just have an oddly shaped or 
skewed distribution, something that’s useful to know before you make 
any conclusions.

Variation

Variation refers to the size of a data cloud. Understanding variation is 
one of the most important parts of any statistical analysis. Why? 
Because people rely on statistics to make weighty decisions, and varia-
tion has a big impact on everything from the simplest data summary to 
the most sophisticated nonlinear analysis. Just think about the sample 
mean and median of the zip code data. These two descriptive statistics 
both measure central location, and so it seems they should agree with 
one another. But they don’t. And this is because variation gives rise to 
a right-skewed frequency distribution in the data.

Variation pops up any time there’s more than one person, place, 
thing, or measurement in a group. It doesn’t matter if you’re counting 
the number of molecules in a test tube or the number of defective parts 
coming off an assembly line. Variation just happens. Like central loca-
tion, there are several ways to measure variation. I’ll introduce three 
of the most common.

Range

The range is the simplest descriptive statistic for variation. It’s the 
largest value, the maximum, minus the smallest value, the minimum. 
In other words, the range is the span of your data cloud. For example, 
the range of zip code areas is the difference between the largest and 
smallest values, or 5497.000 − 0.002 = 5496.998 square miles. That’s 
the total variation of waistline sizes in “they mama.” Simple, right?
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Unfortunately, simple is not always better. Because it only takes 
into account the largest and smallest measurement values, the range is 
generally easy to calculate and easy to understand. But it ignores the 
bulk of the observations, the ones in the middle, and so it can also be 
terribly misleading. For example, suppose you have five observations: 
5, 5, 5, 5, and 20. The average of these observations is 8. The range is 
15. Without looking at every data value, you might be misled to think 
the bulk of observations are around 8, with values ranging from about 
zero to 15. But the actual frequency distribution looks nothing like this. 
In fact, all of the values are very tightly clustered at 5, with only a 
single extreme value, an outlier, at 20. Just like it impacts the average, 
this outlier impacts the range. Without this one value, the average 
would drop to 5, and the range would fall to zero.

The range is notoriously impacted by skewed distributions and 
outliers. This can be a good thing when you’re doing an analysis of the 
extremes, but most descriptive summaries are concerned with the 
majority, not the unusual. In the analysis of zip code areas, the range 
may be nearly 5,500 square miles, but it’s clear from Figure 3.4 the 

Figure 3.6.  Describing the central location, variation, and texture of a typical data 
cloud.
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vast majority of values are smaller than 400 square miles. This is where 
most of the data cloud lies.

Interquartile Range

Percentiles are sometimes used to understand a dataset. A percentile is 
the point below which some specified percentage of the observations 
fall. Think of your dataset as a list of values, sorted from smallest to 
largest. The 10th percentile is the value that’s one-tenth of the way 
down the list. Ten percent of the values are smaller than the 10th per-
centile. Ninety percent of them are larger. The 50th percentile is the 
median, the value halfway down the list. Quartiles refer to the 25th, 
50th, and 75th percentiles, those values 25%, 50%, and 75% of the way 
down the list.

Consider the list of data values: 2, 3, 4, 4, 5, 6, 6, 7, 7, 8. This list 
has ten numbers. The tenth percentile is the value one-tenth of the way 
down the sorted list. That’s the first number on the list, or 2. The 30th 
percentile is 30% of the way down the list, the third value, which is 4. 
The 50th percentile, the median, is the fifth number, which is 5. The 
75th percentile is 6.5.

The interquartile range (IQR) measures the spread of the middle 
half of data values. This statistic is calculated as the difference between 
the 75th and 25th percentile. For example, the list 2, 3, 4, 5, 5, 6, 6, 6, 
7, 8, 9, 10 has twelve numbers. The 75th percentile is 7 and the 25th 
percentile is 4. The IQR is 7 − 4 = 3. This means the middle half of the 
data values fall within three of one another. Because the IQR uses data 
values well inside the extremes, this statistic is always less than the 
range. It also tends to be less sensitive to outliers. For example, the total 
range of zip code areas is nearly 5,500 square miles. The IQR is 
90.4 − 9.0 = 81.4 square miles. This means the middle half of the values 
fall within 81.4 square miles of one another. The other half of the values 
are responsible for the rest of the total variation, all 5,419 square miles 
of it.

Standard Deviation and Variance

The standard deviation and its alternative form, the variance, are the 
most common measures of variation. Like the average, the standard 
deviation is an arithmetic value that uses all of the observations in its 
calculation. Here’s the formula.
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For measurement values x1, x2, . . . , xN, with average x , the standard 
deviation is

	 s
x x x x x x

N
N= − + − + + −

−
( ) ( ) ( )

.1
2

2
2 2

1

�

The variance is the standard deviation squared, in other words, s2.
For the list of values 4, 5, 5, and 6, with an average of 5, the vari-

ance is
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and the standard deviation is
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The standard deviation doesn’t measure the size of a data cloud, at least 
not directly. Rather, it measures the average deviation of your data 
around the sample mean. The standard deviation is always smaller than 
the range. And for bell-shaped data, it’s typically a little smaller  
than the IQR as well. For the bell-shaped data in Figure 3.5, for 
example, the total range is 20, the IQR is 5.5, and the standard devia-
tion is 3.9. For skewed data, the standard deviation is still smaller than 
the range, but it can be smaller or larger than the IQR, depending on 
how stretched the frequency distribution is. For example, the total range 
of the zip code areas is 5,500 square miles, and the IQR is 81. The 
standard deviation is 192 square miles. That’s over twice the interquar-
tile range, a strong indication of just how skewed these data are. Figure 
3.7, while not to scale, illustrates the relationship between these three 
measures of variation as well as to the other descriptive statistics intro-
duced in this chapter.

All of these measures of variation can be useful when analyzing 
quantitative data; however, the standard deviation plays a particularly 
important role in statistics. It may not be as straightforward as the range 
or the IQR, and it may be sensitive to outliers, but it’s firmly rooted in 
the mathematical foundation of uncertainty, and, frankly, statisticians 
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love it. As you’ll see in following chapters, the standard deviation leads 
to many useful statements about the size of a data cloud, helping you 
to calculate the margin of error in a set of observations, compare two 
or more datasets together, and determine if a trend you’re seeing is real 
or coincidental.

HOW HEAVY IS SHE?

Dear Mom,
It’s been two months now, and still I haven’t heard from you. I hope it’s 
because you’ve been busy with your duties as president of the Shady 
Oaks Ladies Club and not because you’re still mad at me.

Along those lines, I have some good news. I’ve finished my chapter 
on descriptive statistics and guess what? There’s no reason for your 
friends to be upset. My qualitative analysis showed that over half of 
the ladies in the “your mama” demographic are impossibly heavy, and 
by that I mean large mammal to planetary object heavy. On top of that, 

Figure 3.7.  Describing “your mama”: how big is she?
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my quantitative analysis, though limited, shows that a typical “your 
mama” is so heavy, she could sell shade to the whole Shady Oaks 
Estates subdivision, all five phases of it! In other words, there’s no real 
resemblance between these ladies and your friends. That means none 
of your friends could possibly be the inspiration for this chapter. None 
of them have any reason to be offended. Not even Marta.

Sincerely,
Your Loving Daughter
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Welcome to Gotham City, the metropolis that has it all: wealth, culture, 
high society, and the strangest assortment of arch-criminals ever seen. 
Fortunately for its residents, Gotham City also has Batman, a superhero 
who sports a cape, tights, and a bat cowl that covers his face, keeping 
his identity a secret. Whenever the likes of the Joker, the Riddler, or 
Catwoman are in town, the caped crusader is ready for action.

Batman’s story began in May 1939 when the character, created by 
Bill Finger and Bob Kane, first fought crime in Detective Comics #27 
(DC Comics 2004). The superhero became an instant hit, earning his 
own title within a year of his first appearance. The comic initially ran 
quarterly, then biweekly, then monthly. As the story developed, Batman 
took on several different personas, from darkly serious to campy and 
back again. After seventy years, he’s still fighting crime, with ongoing 
DC Comics publications, graphic novels, movies, cartoons, television 
shows, and video games.

By day, Batman is the famous rich man and philanthropist Bruce 
Wayne. He inherited his fortune from his parents, who were killed in 
a hold up while walking home from the theater. Witnessing his parents’ 
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murder scarred young Bruce Wayne. But rather than choosing therapy, 
he opted for a secret identity and a life of vengeance. Armed with a 
genius intellect, the athleticism of an Olympian, and high tech gadgets 
developed in a top secret underground laboratory known as the Batcave, 
Bruce Wayne now takes out his revenge on any criminal foolish enough 
to target the citizens of Gotham City.

In the early years, the Golden Age as it is sometimes called, Batman 
was usually accompanied by his sidekick, Robin. First appearing in 
1940, Robin fought by Batman’s side, helping defeat such criminal 
masterminds as the Joker, the Penguin, Catwoman, and the Riddler. By 
day, Robin was Dick Grayson, an orphaned circus acrobat whose 
parents, much like Bruce Wayne’s, were murdered by thugs. Batman 
took in Dick Grayson and raised him like a son while he initiated the 
boy into the life of a superhero. The Boy Wonder stayed with Batman 
for nearly 30 years, until 1969, when he grew up, went off to college, 
and became a superhero in his own right.

Batman is to Gotham City what statistics is to data analysis—a 
superhero ready to jump into the fray and solve any problem, no matter 
how small. The Joker holding the mayor for ransom? Catwoman 
robbing Gotham City Natural History Museum of its solid gold cat 
statues? The boss on your back to make those sales projections? No 
problem. Batman and statistics are there to help.

If statistics is the Batman of data analysis, then probability is his 
sidekick. While Batman’s in the trenches, killing villains, saving chil-
dren, and taking a beating, Robin stands right beside him, ready with 
a bottle of energy water and a couple ibuprofen as needed. Likewise, 
while statistics is out there, searching for truth among reams of data, 
probability stands nearby, ready to supply the mathematical support 
that fuels statistics through even the toughest data analyses.

Robin and probability are hard-working, loyal friends, but they 
come with baggage. Hard as he tries, Robin often ends up in a crimi-
nal’s trap and Batman must save him. Probability can be difficult to 
understand, and even more difficult to apply to any sort of real world 
problem. This begs the question. If Robin and probability are merely 
sidekicks, do we really need them? After all, Batman carries a full sized 
batshield, a batarang, and a Batmobile remote transmitter in his utility 
belt. Surely, Robin can’t offer much more than that. Likewise statistics, 
the science of making conclusions from data, does all the heavy lifting  
when it comes to analyzing data. Probability may be its mathematical 
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foundation, but is it really needed when you’re calculating an average 
and a standard deviation?

Are Robin and probability merely distractions, or do they offer 
something of value? Who cares about sidekicks, anyway?

MEASURING THE THREE Bs

According to my unofficial and completely unscientific research, a 
sidekick should be loyal. You don’t need statistics to know Robin is 
loyal. Between 1940 and 1969 he was there, time and again, fighting 
crime and taking his lumps right alongside Batman. Even after he grew 
up and left for college, the Boy Wonder popped in now and then to 
help Batman solve a case. What makes a good sidekick different from 
a puppy dog is what I call the three Bs: brains, bravery, and brawn. 
These characteristics help him solve clues, save citizens, and defeat bad 
guys. These characteristics make a useful crime fighter.

To measure the three Bs, I’ll take lessons from baseball and game 
shows. These are just two of the many places probability appears every 
day. Probability is the mathematical foundation of statistics, the toolkit 
from which all data analyses are built. The term is commonly used in 
two different ways, and it’s important to know the difference. Probabil-
ity, the mathematical language of uncertainty, describes what are called 
random experiments, bets, campaigns, trials, games, brawls, and any-
thing other situation where the outcome isn’t known beforehand. A 
probability is a fraction, a value between zero and one that measures 
the likelihood a given outcome will occur. A probability of zero means 
the outcome is virtually impossible. A probability of one means it will 
almost certainly happen. A probability of one-half means the outcome 
is just as likely to occur as not.

There are two types of probabilities: theoretical and empirical. 
Theoretical probabilities are constructed from logic and mathematical 
reasoning alone. These types of probabilities are often applied to gam-
bling and game shows. For example, imagine a game show where the 
host shows you three closed doors. One of the doors hides a big pile 
of cash. The other two are empty. You pick a door, and the host opens 
it. What’s the probability you choose the winning door? Three doors. 
One guess. Your chances of winning are one out of three, or 1/3. No 
data required.
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Empirical probabilities are calculated from data. Empirical proba-
bilities appear everywhere, in political polls, drug studies, weather 
predictions, financial reports, and sports. In baseball, for example, a 
player’s batting average is an empirical probability. The batting average 
estimates the probability a player will get a base hit the next time he goes 
up to bat. This value is calculated as the number of base hits the player 
has made up until this point in the season (or career), divided by his total 
number of times at bat. A batting average of 0.300 means that the player 
has a base hit, on average, three out of every ten times at bat. That’s a 
probability of 0.3 his next round at bat will result in a base hit.

So, what’s Robin’s batting average with respect to the three Bs? 
What’s the probability he’ll solve the next clue, rescue Batman from  
a jam, or deliver a decisive blow to the bad guy? There’s no logic or 
mathematical reasoning that can answer this question (at least none that 
I know of), and so the only way to find out is to use empirical probabili-
ties. This means I need to read Batman and Robin comics, lots of them, 
and keep track of these statistics. And that’s just what I did. I chose  
the original comics from the Golden Age, 1940 to 1969, before Robin 
graduated high school and went off to college, while he was still a 
constant fixture in Batman’s life.

Batman and Robin appeared together in hundreds of stories during 
these years, and I don’t have the time or money to collect and read 
every single one of them. So, I did what every respectable statistician 
does when faced with the same problem. I sampled. Sampling is the 
process of choosing a sample, a subset of the population for data analy-
sis. Random sampling, choosing members of the dataset at random, is 
popular because it eliminates the possibility of biases caused by hand-
picking your data. For example, I like the Riddler, an evil mastermind 
who often leaves riddles for clues. If I were to hand-pick Batman 
comics to read, I’d undoubtedly end up with quite a few featuring this 
villian. However, this strategy would probably leave me with an over-
inflated view of Robin’s brains. For, while Batman seems to do most 
of the clue solving, Robin appears to have a knack for unraveling 
riddles. This being the case, my analysis would tend to overestimate 
Robin’s clue-solving capacity. Random sampling prevents this from 
happening.

Random sampling would be the best way to select which comics to 
read. Unfortunately, getting my hands on a large number of randomly 
selected, sixty-year-old comic books is virtually impossible. Instead, I 
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used the next best thing, three recently published collections designed to 
illustrate the breadth and variety of the Batman in the Golden Age. These 
collections, Batman in the Forties, Batman in the Fifties, and Batman in 
the Sixties (DC Comics 2004, 2002, and 1999) include over forty capers 
featuring the Dynamic Duo during this era. There may be an unforeseen 
bias in my data and it isn’t perfect, but the real world never is.

Thanks, DC Comics, for doing my sampling for me.

PROBABILITY: THE SUPERHERO’S TOOLKIT

Let’s return, for the moment, to theoretical probabilities, those probabili-
ties that don’t require data to calculate. To construct such a probability, 
you need three things: a random experiment, a sample space, and an 
event. The random experiment, or trial, is the situation whose outcome 
is uncertain, the one you’re watching. A coin toss is a random experi-
ment, because you don’t know beforehand whether it will turn up heads 
or tails. The sample space is the list of all possible separate and distinct 
outcomes in your random experiment. The sample space in a coin toss 
contains the two outcomes heads and tails. The outcome you’re inter-
ested in calculating a probability for is the event. On a coin toss, that 
might be the case where the coin lands on heads.

To calculate the probability of an event, simply count up the number 
of ways it can occur, and divide by the total number of outcomes in 
your sample space. In the case of a coin toss, there’s one way a heads 
can occur and two possible outcomes, so the probability of a heads is 
1/2. Calculating a probability in this way, by dividing the number of 
outcomes in your event by the total number of outcomes in the sample 
space, is a classical probability. In particular, for a random experiment 
with N possible outcomes, and an event E with M distinct outcomes, 
then the probability of E is

P{ } .E
M

N
=

Calculating classical probabilities is straightforward, but not always 
easy. For example, imagine a game show with two rounds. In the first 
round, you answer trivia questions in order to win chances at the Wheel 
of Prizes. There are five prizes on the wheel, one of which is a car. 
What’s the probability you’ll be driving away in that new car? Consider 
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two scenarios. First, suppose your trivia skills are merely average and 
you win a single spin of the Wheel of Prizes. In this case, your random 
experiment is a single spin of the wheel. Your sample space consists 
of all five prizes on the wheel. Your event is the wheel landing on the 
one spot with the picture of a car. The probability you’ll win the car is 
one chance out of five spots, or 1/5. Pretty simple.

Now suppose you’re a trivia wizard and you win two chances to 
spin the wheel. In this case, your random experiment is two spins of 
the Wheel of Prizes. Your sample space consists of all possible combi-
nations of outcomes on two spins of the wheel, for example, a diamond 
bracelet on the first spin and a television on the second, or a television 
on the first spin and a car on the second. These outcomes are listed in 
Figure 4.1. (Note that a diamond bracelet on the first spin and a televi-
sion on the second is a different outcome than a television on the first 
spin and a diamond bracelet on the second. The order of the prizes 
matters here.) If you count all the ways you can win the car, you’ll find 
nine of them. (Again, a car on the first spin and a bracelet on the second 
is a different way to win than a bracelet on the first and a car on the 
second). So, the probability you’ll win the car is 9/25.

Listing outcomes and counting them up may be doable for this 
example, but it’s tedious. It rapidly becomes impossible as the size of 
your sample space grows. For example, suppose Batman receives a gift 
from his arch-nemesis, the Joker. It contains two harmless-looking die, 
six sided with dots printed on them, just like the ones from a typical 

Figure 4.1.  All possible winnings: two spins of the wheel of prizes.
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board game. Of course, these are no ordinary die. Upon contact with a 
tabletop, they explode, releasing a hundred tiny capsules into the air. 
Each of these capsules holds either poisonous gas or a harmless bit of 
confetti. The sample space in this random experiment consists of every 
possible combination of a hundred poisonous and confetti particles. 
That’s roughly 1030 combinations, too many for even the most diligent 
crime fighter to count!

Fortunately, we have what are called counting rules. Counting rules 
provide formulas for adding outcomes of common events and sample 
spaces. The formulas can get a little complicated, so I’ve banished those 
to Figure 4.2. It’s possible you may never need any counting rules in 
your data analysis life, but a basic understanding of how different out-
comes are counted can make probability calculations much easier, and 
so I feel compelled to spend a little time discussing them.

Take two successive spins of the Wheel of Prizes, for example. These 
two spins are what we call independent trials. Independent trials are 
repeated random experiments, where the outcome probabilities for any 
one trial are not affected by what happened before it. In other words, 
each trial is independent of all previous trials. More on independence 
shortly, but with respect to the Wheel of Prizes, this means that on the 
second spin of the wheel, your probability of landing on the car (or any 
other prize) is 1/5, regardless of what happened on the first spin. This is 
a common type of experiment, and there’s a counting rule for adding up 
the total number of possible outcomes in such a case. So, rather than 
listing out all combinations of prizes, you can refer to Table 4.2 and use 
the formula. For N independent trials, where trial 1 has M1 outcomes, 
trial 2 has M2 outcomes, and so on, the total number of outcomes is 
M1 × M2 × . . . × MN. In other words, the total number of outcomes across 
all trials is the product of the number of outcomes in the individual trials. 
For two spins of the Wheel of Prizes, that’s 5 × 5, or 25.

The counting rules in Table 4.2 apply to other types of experiments 
as well. Suppose, rather than directing you to the Wheel of Prizes, the 
host holds out five envelopes, each containing a slip of paper with the 
name of a prize hidden inside it. You are asked to select two envelopes, 
one at a time. After your first draw, the host reveals your prize: $500. 
On the second draw, the probability of choosing $500 drops to zero—
that envelope is gone—but the probability of the remaining prizes 
increases to 1/4. In other words, the two draws are not independent 
trials, because the probabilities on the second draw are impacted by the 
outcome of the first draw.
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This is an example of what we call sampling without replacement. 
Sampling without replacement occurs when you successively draw 
items from a collection without replacing the ones you drew previously. 
Sampling without replacement is the opposite of sampling with replace-
ment, where items are replaced between draws. (And if you’re follow-
ing me, you might be able to see that sampling with replacement is just 
another name for independent trials.)

There are two commonly used rules for counting outcomes when 
sampling without replacement. The first rule, the permutation rule, 
counts all the possible ways your successive items can be drawn. This 

Figure 4.2.  Common counting rules for classical probabilities.
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rule should be used when the order in which items are drawn matters. 
Referring to Figure 4.2, the total number of ways you can draw N items 
from a collection of M items without replacement is M × (M − 1) × . . . 
× (M − N + 1). For two draws from the prize envelopes, where the first 
draw has five possible prizes to win and the second draw has only four, 
the number of total outcomes is 5 × 4 = 20.

The second rule, the combination rule, counts all the ways some 
combination of items can be drawn from the collection. This rule 
should be used when order does not matter. For example, the number 
of ways you can choose two prize envelopes out of five, without regard 
to which prize is first and which second, is five choose two, or
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In other words, there are ten possible prize combinations you can win 
when you draw two envelopes from the game show host’s hands.

Set Arithmetic 101: The Union, the Intersection, 
and the Complement

The classical probability rule is the foundation of statistics. It allows 
you to calculate the probability of almost any event you’d like. But by 
itself, this rule is like the Batmobile without its rocket blasters. It 
doesn’t take you very far, or very fast. Most of the interesting probabili-
ties involve combining more than one event. For example, suppose the 
evil mastermind King Tut plants a statue of the Egyptian god Anubis 
in the middle of Gotham Central Park. You and I both know the statue’s 
been rigged to release deadly gas on curious onlookers, and so this 
event isn’t terribly interesting. However, combine this with the event 
Batman and Robin show up to foil his evil scheme and now you’ve got 
something. Will the dynamic duo arrive before King Tut poisons his 
first innocent bystander? Calculating this probability requires us to 
combine events, something the classical probability rule just can’t do 
alone.

Events are just sets, collections of outcomes in a sample space, and 
to combine events, you need some basic set arithmetic. To illustrate this 
arithmetic, it’s useful to use a Venn diagram. A Venn diagram is just a 
box with circles inside it. The box represents the entire sample space of 
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Figure 4.3.  Venn diagram for two spins of the Wheel of Prizes.

a random experiment. The circles represent events that can occur. 
Returning to the game show scenario on more time, Figure 4.3 shows 
a Venn diagram for two spins of the five-slotted Wheel of Prizes. There 
are 25 outcomes in this sample space, as indicated in the figure. The 
circle A, shaded in light gray, represents the event you win a car on the 
first spin of the wheel. The circle B, shaded darker, represents the event 
you win a car on the second spin of the wheel. The probability of event 
A is simply the number of outcomes inside the region A divided by the 
total number of outcomes in S. There are five events in circle A. So, the 
probability of winning the car on the first spin, P{A}, is 5/25. Similarly, 
the probability of winning the car on the second spin, P{B}, is 5/25.

There are two ways to combine events A and B: the union and the 
intersection. The union, denoted by the mathematical symbol ∪, is the 
collection of all events in either A or B or both. On a Venn diagram, 
A ∪ B is represented by the area enclosed by both circles. In Figure 
4.3, A ∪ B is the event that you win a car on either the first or second 
spin. In other words, it’s the event you win at least one car. The prob-
ability of this union, P{A ∪  B}, is simply the number of outcomes 
found inside this area divided by the total number of outcomes in S. 
Using Figure 4.3, the probability you win a car on two spins of the 
Wheel of Prizes is P{A ∪ B} = 9/25.



Independent and Mutually Exclusive Events  53

The intersection, denoted ∩, is the collection of events residing in 
both A and B at the same time. This is the region between two circles 
on a Venn diagram. In Figure 4.3, A ∩ B is the event you win a car on 
the first spin and on the second spin. In other words, it’s the event you 
win two cars. The probability of this event is the number of outcomes 
in both A and B divided by the total number of outcomes in the sample 
space. There’s only one way to win the car on both spins of the wheel, 
so in this example, P{A ∩ B} = 1/25. 

The union and the intersection are common in statistics, and these 
operations give us a way to combine two or more events. The comple-
ment is another important concept. For a set A, the complement of A, 
denoted AC, includes all of the outcomes not in A. On a Venn diagram, 
this is represented by the entire region outside the circle A. In Figure 
4.3, the event AC is the event that you do not win the car on the first spin 
of the wheel. The probability of AC can be calculated by counting all the 
outcomes outside A and dividing by the total number of outcomes in the 
sample space, however, if you already know P{A}, there’s an easier way 
to find P{AC}. Because the probability of the entire sample space is one, 
the probability of AC is just one minus the probability of A. In other 
words, P{AC} = 1 − P{A}. So, the probability you do not win the car on 
the first spin of the wheel is P{AC} = 1 − 5/25 = 20/25, or 4/5.

INDEPENDENT AND MUTUALLY EXCLUSIVE 
EVENTS

There are many rules for calculating probabilities of combined events. 
The most common ones focus on two types: mutually exclusive events 
and independent events. Mutually exclusive and independent events are 
so important to statistics and so often confused it’s worth spending a 
little time getting to know them.

Mutually exclusive events are events that cannot both happen at 
once. Think of the event Batman rushes into Police Commissioner  
Gordon’s office, responding to the Bat-Signal. Now think of the event 
millionaire Bruce Wayne rushes into the same office to tell the com-
missioner his precious rare book collection has been stolen. Because 
Bruce Wayne is Batman’s secret identity. In other words, they’re  
the same person. So if you discount the possibility one of them is an 
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imposter, both events cannot happen at the same time. These two events 
are mutually exclusive.

Two events, A and B, are mutually exclusive if their intersec-
tion is empty. Mathematically speaking this means, A ∩ B = ∅.

Two events are independent if the occurrence of one has no impact 
on the other, probabilistically speaking. For example, suppose two of 
Gotham City’s worst villains are making plans. Catwoman hopes to 
steal the famous Cataran diamond from Spiffany’s Jewelry store. 
Egghead wants a golden fossilized dinosaur egg from the Gotham City 
Museum of Natural History. Neither villain attended last month’s 
Enemies of Batman meeting, and both forgot to send out a memo 
informing the city’s other arch-criminals of their plans. In other words, 
they’re operating independently of one another. Since neither knows 
the other’s plans, the probability Egghead will hatch his plot on Tuesday 
is unaffected by the day Catwoman chooses to carry out her scheme. 
The probability Catwoman hits the jewelry store on Tuesday is the 
same whether or not Egghead hits the museum on the same day. Sta-
tistically speaking, the two events are independent.

Two events are independent if the probability of their intersection 
(the set of outcomes in both events) is the probability of the first event 
times the probability of the second. Here’s the formal definition: 

Two events, A and B, are independent if P{A ∩ B} = P{A}P{B}.

It’s easy to confuse mutually exclusive and independent events. Both 
concepts suggest events that are separate and distinct from one another 
in some way. But they are not the same thing. Let me repeat, mutually 
exclusive events and independent events are not the same thing. For 
example, the event Egghead hatches his plot on Tuesday is independent 
of the event Catwoman carries out her plan on the same day. The prob-
ability of one is unaffected by whether or not the other occurs. But 
they’re not mutually exclusive. Both events can happen at the same time.

On the other hand, Bruce Wayne can rush into the commisioner’s 
office. Batman can rush into the commissioner’s office. But both cannot 
happen at the same time. These two events are mutually exclusive. But 
they’re not independent. If Bruce Wayne rushes into the commission-
er’s office, the probability Batman will also appear drops to zero. So 
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the probability Batman will appear is strongly impacted by the appear-
ance of Bruce Wayne.

In general, the following can be said about mutually exclusive and 
independent events: 

If two events have nonzero probability, then they cannot be 
both independent and mutually exclusive at the same time.

Probability Rules

When combining events, statisticians manipulate, redefine, and other-
wise work very hard to make them either mutually exclusive or inde-
pendent. The reason is simple. There are lots of rules for combining 
these special types of events. As a general rule, if you need to calculate 
the probability of a union, the accumulation of all outcomes in two 
events, it’s nice to have mutually exclusive events. If you need to cal-
culate the probability of an intersection, those outcomes residing in two 
events at once, it’s nice to have independent events. Here’s why.

Addition rule: For two mutually exclusive events, A and B, the 
probability of their union is the sum of the individual probabili-
ties. Mathematically speaking, this means P{A ∪ B} = P{A} + 
P{B}.

Multiplication rule: For two independent events, A and B, the 
probability of their intersection is the product of their indi-
vidual probabilities. In other words, P{A ∩ B} = P{A}P{B}.

Suppose you want to calculate the probability that either Batman 
or Bruce Wayne will be the next person to enter Commisioner Gordon’s 
office. This is the probability of the union of two events: (1) Batman 
will be the next one to enter Commisioner Gordon’s office, and (2) 
Bruce Wayne will be the next one to enter Commisioner Gordon’s 
office. Since they can’t both happen at the same time, these two events 
are mutually exclusive. So, if B is the event Batman appears and W is 
the event Bruce Wayne appears, then P{B ∪ W} = P{B} + P{W}.

Now suppose you’d like to calculate the probability Gotham City 
will see a crime from both Catwoman and Egghead next Tuesday. This 
is the probability of an intersection of two events: (1) Catwoman carries 
out her latest plan on Tuesday, and (2) Egghead hatches his plot on 
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Tuesday. If these two events are independent, the probability both 
happen on the same day is just the individual probabilities multiplied 
together. If C = the event Catwoman carries out her plans on Tuesday 
and E  =  the event Egghead hatches his plot on Tuesday, then 
P{C ∩ E} = P{C}P{E}.

Conditional Probabilities

I have a rule of thumb I apply to all my statistical analyses. If you have 
information, use it. For example, say you’re a huge comic book fan and 
you’d like to calculate the probability Batman will walk through your 
front door in the next ten minutes. Knowing Batman’s true identity, 
your estimate would be dramatically different if Bruce Wayne were 
standing next to you than it would be if you were alone in the room. 
Statisticians use conditional probabilities to incorporate knowledge 
such as this into their probability calculations.

A conditional probability, P{A|B}, is the probability event A 
will occur given you know event B has occurred. For two 
events A and B, the probability of A given B is the probability 
both A and B occur (their intersection), divided by the probabil-
ity B occurs. Mathematically,

P |
P

P
{ }

{ }

{ }
.A B

A B

B
= ∩

In general, a conditional probability can be any number between zero 
and one, depending on how much the two events impact one another. At 
one extreme, if A and B are mutually exclusive, they cannot both occur 
at the same time and so the conditional probability of A given B is zero. 
For example, the probability Batman will walk through your front door 
is zero when you have Bruce Wayne sitting on your living room couch. 
At the other extreme, if A and B are independent, then when one occurs, 
it has no impact on the probability of the other occurring and so the 
probability of A given B is just the probability of A. This means the prob-
ability Catwoman will strike today is the same as it was before you 
learned that Egghead just robbed the museum of its golden eggs. Between 
these two extremes lie the non-mutually exclusive, non-independent 
events. These events influence one another in more subtle ways.
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For example, suppose Batman does walk through your front door. 
He can appear alone or with his sidekick, and his sidekick can be in 
superhero form, as Robin, or in civilian form, as Dick Grayson. None 
of these scenarios is impossible. So, letting B represent the event that 
Batman appears and R represent the event that Robin (and not Dick 
Grayson) appears with him, these two events, B and R, are not mutually 
exclusive. Nor are they independent. Batman prefers to travel with his 
sidekick in superhero, not civilian form. This means the probability 
Robin will appear increases the moment you see Batman enter the 
room. In other words, the conditional probability that Robin appears 
given Batman has just appeared is higher than it would be if you hadn’t 
taken your knowledge of Batman into account.

Let’s do a calculation using completely made up probabilities. 
Suppose the probability Batman will stop by for a visit today is 0.25, 
and the probability Robin will visit is 0.05. Suppose also the probability 
both Batman and Robin will visit together is 0.1. Assuming Batman 
visits, the probability he’ll bring Robin with him is the conditional 
probability P{R|B}.
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So, given Batman stops by, there’s a 40% chance he’ll bring Robin 
along. This is much higher than the probability would be if the two 
events were independent. (In which case, P{R|B} would be the same 
as P{R}, or 0.05.)

Empirical Probability: For Those Grounded in Data

Theoretical probabilities, like those presented in the previous section, 
are the foundation of statistics. Not only do they give us a way to cal-
culate likelihoods for simple random experiments, they also lay out the 
rules for more complicated ones. In the real world, people are typically 
more interested in empirical probabilities than theoretical probabilities. 
Empirical probabilities are estimates, values that (1) are calculated 
from a sample of data and (2) are meant to approximate the correspond-
ing probability from the population under study. They appear every-
where, either by themselves or masked as percentages and odds. 
Relative frequencies and the frequency distribution from the previous 
chapter are empirical probabilities. Political polls report the percentage 
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of respondents who favor a particular candidate, this percentage reflect-
ing the empirical probability a random voter would choose that candi-
date. Drug commercials often report the risk of certain drugs, this risk 
being a ratio of empirical probabilities. Empirical probabilities also 
appear in sports. Baseball, in particular, is full of them.

Empirical probabilities are calculated using the classical probability 
rule and the experimental design process. First, you decide on a random 
experiment and then define the sample space and the event you’re inter-
ested in. Then you watch many independent trials of this experiment, 
keeping track of the number of times your event occurs. Divide this 
number by the total number of trials in your experiment and you’re done. 
In baseball, a player’s batting average is calculated in this way. The 
random experiment is a player’s time at bat. The sample space consists 
of two outcomes: a base hit or something else (an out, a walk, etc.). The 
event of interest is a base hit. The batting average is the player’s total 
number of base hits divided by the number of times at bat. This batting 
average can be calculated for a single season or for the player’s entire 
career. Consider a player who’s been up to bat twenty times this season. 
If he’s made a base hit five of those times, his season batting average is 
5/20, or 0.250.

More complex empirical probabilities, those involving more than 
one event, can be combined in the same way theoretical probabilities 
are combined. For example, a baseball player’s batting average against 
a given pitcher is sometimes reported by announcers. This is a condi-
tional probability, P{H|P}, where H =  the event the player will get a 
base hit and P = the pitcher in question. In other words, it’s the probabil-
ity a given player will get a base hit given P is pitching. To calculate 
this, you can apply the definition of conditional probability to your 
calculations. Specifically, you count up the number of times a player 
has a base hit when pitcher P is pitching and divide that by the number 
of times the player has gone up against pitcher P. If a given player has 
gone up against the pitcher ten times this season, and three of those 
times he’s gotten a base hit, his current season batting average against 
that pitcher is 3/10, or 0.300.

SIDEKICKS ARE PEOPLE, TOO

I wish I had a Batcave. It’s an underground complex where Batman 
and Robin do much of their crime solving. It houses the Batmobile and 
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the Batplane. There’s an underground laboratory, a workshop, and even 
a trophy room where the superhero keeps some pretty strange criminal 
devices he’s collected over the years. My favorite room houses the 
computerized crime file. I can only imagine what this wonder of tech-
nology does, but in my mind, it keeps track of everything going on in 
Gotham City—news, weather, social events—and distills all that infor-
mation down to what’s important for an investigation. It also performs 
voice-activated data analysis and makes a great cup of espresso.

Since I don’t have my own computerized crime file, I had to rely 
on less sophisticated methods to calculate Robin’s batting average. 
First, I read through every comic in Batman in the Forties, Batman in 
the Fifties, and Batman in the Sixties, counting the number of times 
Batman, Robin, or both together exhibited one of the three Bs. In other 
words, I kept track of how many times each of them either solved a 
clue, rescued themselves from a criminal’s trap, or punched a bad guy. 
I also counted the total number of clues, traps, and punches in all of 
the comics, and threw these numbers at Microsoft Excel.

There are two common ways to display empirical probabilities. 
When there are many categories or outcomes in a sample space, the 
relative frequency distribution is often displayed with a bar chart or a 
histogram. You can find lots of these types of charts in Chapter 3. When 
there are relatively few categories or outcomes to plot, a pie chart works 
nicely. A pie chart shows the different outcomes as slices of a pie, where 
the size of each slice represents the relative proportion of a given 
outcome. Figure 4.4 displays the pie charts for each of the three Bs—
brains, bravery, and brawn—as measured by (a) clues solved, (b) 
rescues, and (c) punches delivered.

In each chart, Batman is shaded light, and Robin is shaded dark. 
Clues or rescues needing both Batman and Robin are shaded in medium 
gray between the two extremes. In the pie charts, the relative propor-
tions are reported as percentages, but since a percentage is simply a 
fraction multiplied by one hundred, they can easily be turned into a 
probability simply by moving decimal point two places to the left.

In these three pie charts, the shading alone makes it clear. Batman 
dominates in all areas. He alone solves the vast majority of the clues 
and delivers most of the punches. He alone performs almost half of the 
rescues. He alone is the superhero. On the other hand, Robin’s contribu-
tion cannot be ignored. He delivers 40% of the blows, and so his brawn 
batting average is P{Robin will deliver a punch} = 0.4. Furthermore, 
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Figure 4.4.  Measuring the three Bs.

he may not perform any of the rescues by himself, but Batman needs 
him 57% of the time to get out of a jam.

Robin’s biggest weakness appears to be in the brains department. 
He solves a mere 4% of clues by himself, and helps Batman an addi-
tional 20% of the time. The other 76% of the time, it’s up to Batman 
to do the heavy brain work. However, as I mentioned at the beginning 
of this chapter, the Boy Wonder does seem to have a knack for solving 
the Riddler’s clues. There was only one Riddler story included in my 
initial dataset, but in that story, Robin unravels three out of six riddles. 

Could solving riddles be one of Robin’s many talents? To find out, 
I tried to get my hands on a bunch of Batman and Robin capers involv-
ing the Riddler. Easier said than done. As it turns out, the Riddler 
appeared in only ten Batman and Robin comics between 1940 and 
1970. Fortunately, with the help of my local comic book store, I was 
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Figure 4.5.  Batman and Robin vs. the Riddler: clues solved.

able to get a total of five of them. One story was from my original col-
lection, and four more were available in Batman: Featuring Two-Face 
and the Riddler (DC Comics, 1995), and Showcase presents Batman, 
vol. 3 (DC Comics, 2008).

There were a total of nineteen riddles in these five capers. Most of 
these riddles had an obvious answer and a more subtle meaning. Gener-
ally, either Batman, Robin, or both would answer the riddle, and then 
both would unravel what it meant to their investigation. Figure 4.5 
displays a pie chart of Batman and Robin’s record in solving these 
riddles. Because only capers involving the Riddler are included, this 
pie chart represents the conditional probabilities that Batman, Robin, 
or both will solve a riddle. According to the figure, Robin alone solves 
47% of them, giving him a riddle-solving batting average of P{Robin 
will solve a clue | the Riddler is the villain} = 0.47. A batting average 
like this qualifies him for the All-Stars. It also shows that the event 
Robin will solve a clue is not independent of the event the Riddler is 
the villain. If they were independent, then the Boy Wonder’s batting 
average against this villain would be the same as his overall batting 
average, 0.040. Instead, it’s much higher.

NEVER LEAVE HOME WITHOUT ONE

On the whole, Robin may not be the brains of the dynamic duo, but he 
makes up for it in other ways. He’s a real asset when the Riddler’s in 
town. He follows Batman everywhere, sticking by his side in a pinch,  



62  Chapter 4  Baseball, Game Shows, and Sidekicks

jumping in to help with a rescue over half the time. And he’s always 
ready to fight for his friend, taking a beating while he dishes out almost 
half of the punches. All in all, he’s a loyal friend and worthy sidekick. 
Just like probability.
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Remember that girl from high school? You know the one. She had two 
happily married parents, 1.4 siblings, decent grades, and a pleasant but 
not too perfect overbite. She was friendly and wholesome and fun to 
be around. I always envied this girl with her easy manners and effort-
less hair (my social skills were awkward and my own hair always 
looked more like hay than silky golden locks). Even so, I couldn’t help 
but like her. Everybody liked her.

Just like high school, statisticians have their own popularity con-
tests. But what warms our hearts isn’t a pleasant smile. It’s power. The 
power to characterize data. The power to confidently state what we 
know and, just as importantly, what we don’t know. The power to 
answer questions in the midst of life’s uncertainty. This kind of power 
requires more than a few descriptive statistics and some counting rules. 
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It requires a tool for calculating the probabilities of outcomes in a 
random experiment, a tool that can be used on any type of data, no 
matter how complex. This kind of power requires something called the 
probability distribution.

There are many types of probability distributions out there, and 
each one has its uses. Without a doubt, no probability distribution is 
more common or more popular than the normal distribution. This girl-
next-door of all probability distributions is well-rounded and easy to 
work with, and many types of data naturally conform to its pleasing 
personality. As if that’s not enough, there are two rules that can mold 
almost any set of data, no matter how awkward, into the normal distri-
bution. Not only does this make the normal distribution wildly popular 
among statisticians, it also gives all of us nerds, geeks, outcasts, and 
oddballs out there a chance to answer one of our most secret, burning 
questions.

What’s it like to be normal?

THE GRANDDADDY OF ALL DEMOGRAPHIC  
DATA SOURCES

If you live in the United States, you probably know about the Census 
Bureau. This government agency is responsible for keeping track of the 
demographics of the U.S. population: age, income, housing, family size, 
and so on. Every ten years, the Census Bureau takes on the monumental 
task of surveying of every man, woman, and child in the United States 
and compiling this information into a massive dataset capturing not a 
sample, but the entire population of the country. The government uses 
these data to predict trends in income, lifestyle, and population distribu-
tion so it can set policies and allocate resources accordingly. The Census 
Bureau makes these data publicly available to anyone who wants them. 
As of this writing, data from the most recent decennial survey, the 2010 
Census, is gradually becoming available on their website.

Most people know about this massive data collection effort that 
takes place every ten years, but that’s not the end of it. Big Brother is 
always watching, and the U.S. Census Bureau is constantly collecting 
information on the population. In fact, this agency conducts six ongoing 
surveys covering everything from emergency care to salaries to com-
muting time (U.S. Census Bureau 2012), and at any given time, at least 
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one of these surveys is in progress. All of this information is available 
on their website, www.census.gov. You only need a little time and some 
determination to get it.

The American Community Survey is one of the ongoing surveys 
conducted by the Census Bureau. Each year, a small percentage of the 
population is asked to provide information about home and work life. 
This includes income, work benefits, disabilities, community involve-
ment, and commuting time. It’s the perfect dataset for an oddball like 
me, the perfect way for a statistician to learn all about normal. Without 
a dataset like this, I’d need to design my own survey. I’d need to decide 
what questions to ask and how to ask them in an objective way. I’d 
need to decide how many people to call and select those people at 
random from the entire U.S. population. But thanks to the U.S. Census 
Bureau, that’s already been done for me. And it’s been done by the 
experts.

If you’re looking for a class project idea or if you’re merely curious, 
I encourage you to navigate to the Census Bureau’s website and do a 
little data shopping. I will warn you, however, there’s a lot of informa-
tion out there. If your computer tends to get queasy at the sight of large 
files, avoid downloading the detailed data and stick to summaries 
instead. For my assessment of normal, I downloaded every record from 
the 2010 American Community Survey, this relatively small annual 
sampling of the U.S. population. The result was over 98,000 records. 
I love data as much as the next statistician, but there can be too much 
of a good thing!

PROBABILITY DISTRIBUTIONS AND WHY WE  
NEED THEM

Based on descriptive statistics—sample means, medians, and modes—
pulled from recent data summaries on the U.S. Census Bureau’s website, 
the typical American is a 44-year-old woman named Smith, a wife and 
mother who drives to work alone, makes about $45,000 a year, com-
municates over the Internet virtually every day, talks to her neighbors 
a couple times a week, and never discusses politics.

If that’s you, then congratulations, you’re officially normal.
Of course, most of us don’t fit this exact description. We’re the 

others, the ones who take the train to work, the ones who hate our 

http://www.census.gov
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neighbors and the Internet, the ones who freely share our political 
opinions with anyone who’ll listen. So what does this description mean 
to all of us? Does it mean we’re outcasts doomed to spend our freakish 
lives on the fringes of society? Worse yet, does it mean we don’t count 
in the big scheme of all things demographic? The answer to these ques-
tions can be found in something called the probability distribution.

A probability distribution is a mathematical function that attaches 
probabilities to all possible outcomes in a random experiment. You’ve 
already seen simple probability distributions such as the one for a coin 
toss, where

P heads and P tails{ } , { } .= =1

2

1

2

This distribution gives us the probability that the coin will land on 
either one of its two sides. All you need to do is look at the function 
value for the outcome you’re interested in.

If all random experiments were as simple as a coin toss, we wouldn’t 
really need probability distributions. We could rely on the classical 
method and counting rules to calculate any probability we wanted. 
However, the real world rarely gives us such simplicity. From calculat-
ing sales trends to estimating the reliability of pacemakers, most real 
data analyses require more sophisticated tools for characterizing random 
experiments. The probability distribution is just such a tool.

The foundation of any probability distribution is a random variable. 
Usually denoted by a capital letter such as X, a random variable is 
nothing more than a mathematical value describing the outcome of a 
random experiment. For example, think of a coin toss. In the last 
chapter, without the use of random variables, I simply called the out-
comes {heads} and {tails}. Now, I can become slightly more mathe-
matical and say “let X be the outcome of a coin toss, where 1 refers to 
heads and 0 refers to tails.” In this case, P{X = 1} = 1/2.

By representing outcomes as random variables rather than wordy 
event descriptions, we can be more precise, more versatile, and more 
efficient. Suppose you toss a coin three times and you’d like to  
know the probability at least two of those tosses come up heads. 
Without the use of random variables, you’d have to do something like 
the following:
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P at least two of three tosses are heads
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and so on for all possible combinations resulting in two or three heads. 
This formulation is much simpler with a random variable. In particular, 
if we let Xn be the outcome of the nth coin toss, where Xn = 0 (tails) or 
1 (heads), then we can simply say

P at least two heads P{ } { }.= + + ≥X X X1 2 3 2

This second formulation is more mathematical and takes a little getting 
used to, but as you’ll see throughout this chapter, it’s much easier to 
work with when the random experiments become more complicated 
and more realistic.

There are three important requirements for the probability distribu-
tion. First, it should be defined for every possible value the random 
variable can take on. In other words, it should completely describe the 
sample space of a random experiment. Second, the probability distribu-
tion values should always be nonnegative. They’re meant to measure 
probabilities, after all, and probabilities are never less than zero. Finally, 
when all the probability distribution values are summed together, they 
must add to one. For example, the distribution for a coin toss could be 
formally described as follows:
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This function meets all three requirements for a probability distribution 
function. It’s defined for both values X can take on, both of the probabili-
ties are nonnegative, and when added together, they sum to one.

Random variables and probability distributions bring all the power 
of mathematics to the business of characterizing random experiments. 
Random variables can be added, subtracted, and multiplied together as 
needed. They can have an unlimited range or infinitely many possible 
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values, whatever the situation requires. Probabilities can be calculated 
with a simple formula, without the need for binning or counting out-
comes. In short, random variables and probability distributions give us 
the ability to describe almost any type of random experiment, no matter 
how complex.

There are many well known probability distributions, and each one 
has a specific purpose. All of them fall into two basic categories: dis-
crete and continuous.

Discrete Probability Distributions

Discrete random variables are used for experiments where the out-
comes are discrete, or countable. A coin toss, the number of hits a 
website receives in a 24-hour period, the number of text messages 
you’ll respond to in the next hour, all of these values are discrete 
random variables, because you can count up all the possible values in 
the sample space. Discrete probability distributions describe discrete 
random variables.

One of the topics covered in the 2010 American Community Survey 
is civic involvement. Respondents were asked many questions about 
their social habits, including how often they eat dinner with their family, 
how frequently they communicate over the Internet, and whether or not 
they’ve ever boycotted a product. Figure 5.1 plots the frequency distribu-
tion of responses to this last question. The most popular answer, mode 

Figure 5.1.  Responses to the ACS 2010 question: Have you ever boycotted a product?
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of this distribution, is “No.” In other words, the vast majority of Ameri-
cans have never boycotted a product.

Let X be a random variable, where X = 0 if a person has participated 
in a boycott and X = 1 if a person has not. This random variable, X, is 
a discrete random variable because you can count all the outcomes in 
the sample space, all two of them. According to Figure 5.1, 11.6% of 
people have boycotted a product. Rounding this value to 12%, the 
probability distribution function for X is the following:
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This formula should look a lot like the probability distribution for a 
coin toss, with good reason. Both random variables follow the same 
probability distribution. It’s the Bernoulli distribution, which describes 
a random variable with two possible outcomes and success probability 
(the probability X = 1) of p. The possible outcomes of the two random 
variables are the same. Only the probabilities are different.

All probability distributions have two parts: (1) a mathematical 
function, and (2) one or more parameters that go into the function. The 
function is a formula that determines possible outcomes and general 
tendencies of the random variable. This function is like a high school 
clique. It defines, very generally, how the random variable will behave. 
For example, jocks will play sports. Chess club kids will be smart. The 
Bernoulli distribution will have two possible outcomes. The parame-
ters of a distribution dictate the specifics, things like the central location 
and variation. These parameters are like the individuals in a clique, 
each with his or her own unique personality. All jocks may play sports, 
but some might prefer basketball over football. All Bernoulli random 
variables have only two possible outcomes, but the probabilities of 
those outcomes may be very different.

Discrete probability distributions are generally plotted in the same 
way frequency distributions are plotted, with the possible values on  
the x-axis and the probability of each value on the y-axis. And like 
frequency distributions, probability distributions can be left-skewed, 
right-skewed, or symmetric. Figure 5.2 plots some of the most common 
discrete distributions. As you can see from the figure, their shapes vary. 
The binomial and Poisson distributions, for example, are almost sym-
metric and near bell-shaped. The discrete uniform distribution is also 
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symmetric, but its shape is rectangular. And the right-skewed geometric 
distribution, with its long tail, is neither symmetric nor bell-shaped. 
These different distribution shapes reflect different tendencies of a 
random variable, and each shape depends not only on the name of the 
probability distribution, but also its parameter values.

If you recall from the last chapter, independent trials are successive 
random experiments where the outcome of the current trial is not 
affected by the outcome of previous trials. One of the most common 
discrete probability distributions, the binomial distribution (Figure 
5.2a), applies to this important situation. Specifically, the binomial 
distribution is a probability distribution describing the number of 

Figure 5.2.  Common discrete probability distribution functions.
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successes in a fixed set of independent trials. The parameters for the 
binomial distribution are the number of trials (N), and the probability 
of success on any one trial (p). For example, the number of heads you 
get on three coin tosses is a binomial random variable with parameter 
values N = 3 and p = 1/2. The mathematical formula for the binomial 
distribution is left to more rigorous textbooks, such as those listed in 
the reference section. For practical purposes, many spreadsheet soft-
ware packages have functions for calculating probabilities of the  
binomial distribution. In Microsoft Excel, this function is called 
BINOMDIST.

The binomial distribution applies to any situation where you’d like 
to count specific occurrences: the number of “yes” answers on a survey, 
the number of defective parts coming off an assembly line, or the 
number of wins your favorite football team has in a given season. The 
binomial distribution can also be used to count responses in the 2010 
American Community Survey. For example, one of the questions on 
this survey asks respondents how often they talk to their neighbors. 
There are five possible answers to this question, ranging from “Basi-
cally every day” to “Not at all.” Figure 5.3 plots the frequency distribu-
tion of the responses.

The most common answer, the mode, is “A few times a week.” So, 
if we were only looking at descriptive statistics, we’d say the typical 
American talks to his or her neighbors a few times a week. However, 

Figure 5.3.  Responses to the question: How often do you talk to your neighbors?
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only 16% of people fit this description of what I’ll call moderately 
chatty. The other 84% of us don’t. We talk to our neighbors more or 
less frequently than a few times a week, and there’s a lot more of us 
than of those perfectly typical people. In other words, the mode may 
be the most popular category, but it doesn’t necessarily include most 
of the people.

If most individuals don’t fit the typical profile of moderately chatty, 
what does this mean for an entire neighborhood? Suppose you have 
forty neighbors total. Because the probability any one of them will be 
moderately chatty is 0.16, the total number of moderately chatty neigh-
bors you have, call it X, is a binomial random variable with number of 
neighbors N = 40 and success probability p = 0.16. Individual probabili-
ties for different values of X can be calculated using the BINOMDIST 
function in Excel. The entire distribution function, made up of all of 
the individual probabilities, is plotted in Figure 5.4. Note the shape and 
placement of the distribution. The bulk of it sits on the low end of the 
range, far below forty and centered around six, but despite being a little 
off center, it has a nice, symmetric, almost bell-shaped distribution 
(more on this to come).

If moderately chatty is the typical neighborly behavior, then you’d 
expect many of your neighbors to fit this description, right? Let’s find 
the probability more than a quarter of your neighbors, or ten out of 

Figure 5.4.  The binomial distribution for moderately chatty neighbors (40 neighbors 
with success probability 0.16).
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forty, will be moderately chatty, in other words, P{X > 10}. This value 
can be calculated from the cumulative distribution function. The cumu-
lative distribution function, or CDF, is simply the probability P{X ≤ x} 
for any value of x, and it’s calculated by adding the probabilities for 
all values up to and including x. This value can be found the hard way 
by adding up the probability distribution function for all values below 
x, for example, P{X ≤ 3} = P{X = 0} + P{X = 1} + P{X = 2} + P{X 
= 3}. However, this type of calculation isn’t often necessary because 
most spreadsheet programs have built-in functions for calculating these 
cumulative probabilities. In Excel, the BINOMDIST function with the 
cumulative parameter set to TRUE will do this for you, and this func-
tion gives P{X ≤ 10} = 0.95.

This value, P{X ≤ 10}, isn’t quite what we were looking for. We’re 
interested in the probability more than ten neighbors will be moderately 
chatty. This value, P{X >  10}, can be calculated with a helpful little 
probability rule, the complement rule: 

For any value of x, P{X > x} can be calculated from the cumu-
lative distribution function using this formula:

P 1 P{ } { }.X x X x> = − ≤

As you’ll see in upcoming chapters, the value P{X > x} is used in many 
different types of statistical analyses, and so it’s important to under-
stand the complement rule. Remember, the probabilities for all possible 
outcomes of a random variable must add to one. The outcomes where 
X ≤ x and X > x include all possible values of a random variable, and 
so their probabilities must also add to one. This relationship is shown 
in Figure 5.5.

The complement rule gives us an easy way to calculate the prob-
ability ten of your forty neighbors will be moderately chatty. Since 
P{X ≤ 10} = 0.95, P{X > 10} = 1 − 0.95 = 0.05. In other words, in a 
neighborhood of forty people, there’s only a 5% chance that more than 
ten of them will fit the typical, moderately chatty profile.

If more than ten is unlikely, then how many moderately chatty 
neighbors would you expect to have? In Chapter 3, I would have 
answered this question with descriptive statistics, by calculating the 
sample mean and standard deviation of a bunch of data collected from 
many different randomly selected neighborhoods. But now I can simply 
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Figure 5.5.  The complement rule.

≤

≤

use the probability distribution in Figure 5.4. Like datasets, random 
variables have a central location and variation associated with them, 
and these properties are used often. Denoted by the Greek letter μ, the 
mean describes a random variable’s central location, in other words, 
the arithmetic center of the values a random variable can take on. 
Denoted with the symbol σ2, the variance is the squared deviation of 
values around the mean, in other words, the standard deviation squared.

Conceptually, the mean and variance of a random variable are  
just like the corresponding values calculated from a sample of data. 
However, unlike descriptive statistics, these quantities are theoretical 
values, calculated directly from the probability distribution function. 
No data are required. The mathematical details on how to calculate the 
mean and variance of a random variable are left to texts more rigorous 
than this one. In Figure 5.6, I’ve listed formulas for the mean and vari-
ance of some common probability distributions introduced in this and 
the next section. These formulas are always the same for a distribution, 
but their values depend on the parameters chosen. In other words, two 
random variables can belong to the same group, such as the binomial 
distribution, and still have very different personality traits, like a mean 
of ten, a hundred, or even a thousand.

Back to the social habits of your neighbors. In a neighborhood of 
forty, how many moderately chatty neighbors would you expect to 
have? From Figure 5.6, the mean of a binomial random variable with 
N trials and success probability p is μ = Np. So, the mean number of 
moderately chatty neighbors is μ = 40*0.16 = 6.4. In other words, in a 
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neighborhood of 40 people, you’d only expect about six of them to fit 
the most typical chattiness profile. The rest would fit something else.

You might wonder how the mean of a random variable that only 
takes on integer values could be such an impossible, non-integer value 
as 6.4. This is common for discrete distributions and nothing to worry 
about. The mean of a random variable is an arithmetic value, just like 
the average. It describes the central location of some theoretical data 
cloud made up of all possible values for a random variable. For a dis-
crete distribution, such a cloud contains holes, points on the real line 
where no possible outcomes lie, so it’s quite easy to have an arithmetic 
center that falls into one of these holes. In other words, the mean 
doesn’t need to hit one of the possible values, it only needs to fall inside 
the range of the probability distribution.

Continuous Probability Distributions

Continuous random variables are used for continuous observations. 
These are the variables whose possible values cannot be counted. The 

Figure 5.6.  Common probability distributions.
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number of gallons of gas it takes to fill your car, the amount of medication 
needed to cure a disease, the concentration of pollutants in your local 
water source, all of these are random variables that can take any value in 
some range. And no matter what two values you choose, there will be 
more values between them. For example, between 15.4 and 15.5 gallons 
of gasoline is 15.45 gallons. Between 15.45 and 15.46 gallons is 15.455 
gallons, and so on.

Continuous probability distributions describe continuous random 
variables. Like discrete distributions, they have two parts to them: a 
function describing general tendencies and parameters that specify the 
particulars. Like discrete distributions, they’re used to calculate prob-
abilities of specific values a random variable can take on. And like 
discrete distributions, each continuous distribution has a mean and 
variance associated with it. However, continuous and discrete probabil-
ity distributions are not exactly the same thing for one very important 
reason.

For a discrete random variable X, the value of the probability dis-
tribution function at x is an actual probability, p(x) = P{X = x}. This 
isn’t the case for a continuous random variable. Why? Remember the 
values of a continuous random variable cannot be counted. There are 
infinitely many of them, and if you choose two, no matter how close 
together, you can always find another in between them. Thinking in 
terms of the classical probability method, the probability of any one 
value is some number divided by the total number of outcomes. For a 
continuous random variable, the total number of outcomes is infinite 
and so the probability of any one outcome is zero.

On the other hand, a continuous random variable has to take on 
some value. How can the probability of every individual outcome be 
zero when one of those outcomes eventually occurs? Spending too much 
time thinking about this paradox can make you crazy, and unfortunately, 
the answer lies well beyond the scope of this book. For practical pur-
poses, the only important thing to remember is that a probability density 
function doesn’t give you probabilities of individual outcomes.

What does it give you? I like to think of it this way: a continuous 
probability distribution function gives you relative likelihoods of ranges 
of a continuous random variable, much in the way a histogram gives 
you relative likelihoods for bins of data. In particular, a random variable 
is more likely to fall in a range where the probability density function 
values are high, and least likely to fall in a range where they are low. 
More importantly, the probability density function is the foundation of 
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the cumulative distribution function, P{X ≤ x}. The cumulative distri-
bution function for a continuous random variable is a legitimate prob-
ability, and it’s used widely in statistics.

Perhaps because discrete and continuous distribution functions 
measure slightly different things, their names are different. For a con-
tinuous random variable, this function is called the probability density 
function. Requirements for a probability density function are as follows. 
It is always greater than or equal to zero. The sum total of the probabil-
ity density function for all possible values of X is one (that’s the integral 
of the function over all x, for those who have taken calculus). And the 
cumulative probability distribution P{X  ≤  x} is the probability the 
random variable will be less than or equal to x. For most common 
probability distributions, the cumulative distribution function has either 
already been figured out for you, or can easily be calculated using 
common tables or formulas in programs like Excel.

Some common continuous probability density functions are plotted 
in Figure 5.7. As with discrete distributions, the shapes of these prob-
ability density functions reflect random variables with dramatically 
different tendencies. For example, the normal distribution is the perfect 
bell curve. Random variables with this distribution are more likely to 
fall in the center of the range, near the peak function value. The uniform 
distribution is symmetric but oddly square, and for mean three, it 
abruptly ends at a value of six. Random variables following the uniform 
distribution can occur anywhere in their range with equal probability. 
The exponential distribution is definitely not normal, with its right-
skewed shape and stretched tail. Random variables having this distribu-
tion tend to fall on the low end of their range.

Far and away the most popular continuous distribution is the normal 
distribution (Figure 5.7a). Chances are, you’ve already run across the 
normal distribution somewhere. It’s also called the Gaussian distribu-
tion or the bell curve. The normal probability density function is sym-
metric and nicely rounded. It has two simple parameters: the mean and 
the variance. This distribution is so important to basic statistics and so 
popular, I’m going to break my rule of no complicated formulas and 
show you what it looks like.

For a random variable X following a normal distribution with mean 
μ and variance σ2, the normal probability density function is
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Figure 5.7.  Common continuous probability density functions.

Put into words, a normal random variable can take on any real value, 
positive, negative, or zero. The density function is always largest at the 
mean, and it gradually decreases to zero on both sides. The width of 
the curve is determined by the variance parameter—the larger the vari-
ance, the shorter and wider the bell. Figure 5.8 illustrates how different 
mean and variance values change the central location and width of the 
bell curve.

Figure 5.8a plots a special case of the normal distribution, the 
standard normal distribution. In this case, the mean is zero and the 
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variance one. The standard normal distribution plays an important role 
in statistics, because it turns out that you can transform any normal 
random variable into a standard normal random variable. Simply sub-
tract off the mean and divide by the standard deviation (the square root 
of the variance) and you’re done. Mathematically, if X is a normal 
random variable with mean μ and variance σ2, then

Z
X= − µ

σ
is a standard normal random variable.

Figure 5.8.  The many faces of the normal distribution.
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Before the age of the Internet and Excel, transforming your normal 
random variable to a standard normal random variable was an essential 
step in the process of calculating probabilities for this distribution. This 
is because the cumulative distribution function, P{X ≤ x}, for a normal 
random variable doesn’t have a nice simple formula. Rather, we must 
rely on data tables and numerical approximations to calculate it. There’s 
not enough paper in the world to print tables for every possible mean 
and variance combination, so the tables in the back of most statistics 
textbooks only report values for the standard normal distribution. And 
so it was up to you, the data analyst, to make the transformation.

Now, with programs like Excel and normal probability calculators 
available on the Internet, transforming your random variable to standard 
normal isn’t so crucial anymore. However, this special case of the 
normal distribution still plays an important role in statistics because  
it’s used for most basic analyses. So keep the random variable Z and 
the standard normal distribution in the back of your mind. We’ll return 
to it later.

It’s hard not to like the normal distribution. It has a common shape 
and nice, easy-to-work-with properties. But this distribution isn’t just 
another pretty face. It’s also incredibly useful. Not only do many data-
sets follow this girl-next-door of all probability distributions, other 
random variables do as well. In fact, some random variables are so 
bell-shaped, the much easier normal distribution can be used in their 
place. The binomial and Poisson random variables are two such normal 
wannabes. I’ll discuss the normal approximation to a binomial random 
variable here. The case for a Poisson random variable is similar and 
can be found in Triola (2004) and other references listed at the end of 
this book.

In general, the shape of the binomial distribution with parameters 
N and p depends on its mean, μ = Np. When the mean is small, it has 
a right-skewed shape. However, as Np (and conversely N(1 − p)) grows, 
the shape gradually becomes more symmetric until eventually, it resem-
bles a bell. Figure 5.9 shows how the shape of the binomial distribution 
changes for N = 10 when p changes from 0.1 to 0.5. A normal density 
function has been plotted over both cases for reference.

When Np ≥ 5 and N(1 − p) ≥ 5, the normal distribution provides a 
good approximation to the binomial distribution. To use this approxi-
mation for P{X  ≤  x}, you set the mean μ  =  Np and the variance 
σ2 = Np(1 − p). Then you make a continuity correction, a 0.5 change 
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to your x-value that adjusts for switching from a discrete distribution 
to a continuous distribution. This adjustment can be an addition or 
subtraction depending on the type of probability you want to calculate, 
but for both P{X ≤ x} and P{X > x}, this means adding 0.5 to the x-
value. Plug the mean, variance, and continuity-corrected x-value into a 
normal probability calculator like NORMDIST, and you’re done.

Recall the friendly neighbor example from the previous section. 
The number of moderately chatty neighbors in a neighborhood with 
forty people is a binomial random variable with N =  40 and success 
probability p = 0.16. The mean number of moderately chatty neighbors 
is Np = 40(0.16) = 6.4, and the quantity N(1 − p) = 33.6. Both quanti-
ties are above five and so the normal approximation applies. The vari-
ance is Np(1 − p) = 40(0.16)(0.84) = 5.4, and so the standard deviation 
is 5 4 2 3. .= . To approximate P{X ≤ 10}, simply set x = 10.5, μ = 6.4, 
and σ = 2.3, and run NORMDIST. The result is 0.96, very close to the 
value of 0.95 obtained from binomial distribution directly.

Figure 5.9.  The binomial distribution: a normal wannabe.
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Sampling Distributions

Any time you collect data, you have uncertainty to deal with. This 
uncertainty comes from two places: (1) inherent variation in the values 
a random variable can take on and (2) the fact that for most studies, you 
can’t capture the entire population and so you must rely on a sample to 
make your conclusions. I’ve spent most of this chapter showing how 
probability distributions can be used to describe the first type of uncer-
tainty. As it turns out, they can also help us with the second.

A probability distribution for any value calculated from a dataset 
is called a sample distribution. This value could be an estimate such as 
the sample mean or standard deviation. It could also be a statistic, a 
formula that combines estimates together for reasons you’ll see later. 
In any case, a sample distribution incorporates both types of uncertainty 
into a single probability distribution. For example, the sample mean 
and variance are commonly used descriptive statistics. These parameter 
estimates are often used to approximate the mean and variance of a 
population, in other words, the actual parameters, the values you don’t 
know. Because of their importance in statistics, it’s useful to know just 
how accurate the sample mean and variance are likely to be. Sample 
distributions give us the tools to determine this.

Sample distributions are the cornerstone of many statistical analy-
ses, and with just a few of them in your toolbox, almost anything is 
possible. One in particular, based on the all-important central limit 
theorem, gives us yet another reason to love the normal distribution.

Fitting in with the Central Limit Theorem

The normal distribution works great for nicely rounded, symmetric 
datasets. It also works for nearly-normal data, those that are just slightly 
skewed or barely off center. But what about everybody else? What 
about those distributions with extreme values, heavy tails, and odd, 
chunky shapes? Well, the normal distribution helps us in this situation 
as well. There’s a rule, and it’s one everybody can appreciate, even the 
outcasts, nerds, and geeks. This rule can help virtually any dataset look 
normal. It’s called the central limit theorem.

The central limit theorem applies to a sample distribution, specifi-
cally the distribution of the sample mean of a dataset. In words, the 
sample mean of any dataset, no matter how oddball, looks more and 
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more normal as your number of observations grows. Here’s the formal 
definition: 

As the sample size N increases, the sample distribution of the 
average (or sample mean) grows increasingly more like the 
normal distribution with (true) population mean μ and variance 
σ2/N.

There are three important properties stated in the central limit 
theorem. To understand basic statistics, you need to know all three:

1.	 As you increase your sample size, the sample mean looks 
more and more normal. This is different from your individual 
observations looking more and more normal. No theorem can 
help you with that.

2.	 As you increase your sample size, the sample mean gets closer 
and closer to the true population mean (the value you’re trying 
to estimate). This is one reason to love more data and not less.

3.	 The variance of the sample mean is σ2/N. In other words, the 
variance of this estimate decreases proportionally with the 
number of observations in a sample. A smaller variance means 
more certainty in your conclusions. Yet another reason to love 
more data and not less.

The best way to illustrate the central limit theorem is to show it in 
action, and I’ll do this for age data from the 2010 American Community 
Survey. Figure 5.10a plots the frequency distribution of the ages of 
respondents in the survey along with a scaled normal probability density 
function for reference. These data do not follow the popular bell-shaped 
distribution. They’re chunky and square. There’s no real peak in the 
center and no gradual slope to the sides. In other words, these data 
aren’t normal.

According to the central limit theorem, it doesn’t matter what the 
raw data look like, the sample variance should be proportional to the 
number of observations and if I have enough of them, the sample mean 
should be normal. To see if this is true, I’ve divided this large dataset 
of over 98,000 ages into what I’ll call mini-samples, where each mini-
sample contains the same number of randomly selected observations. 
If the sample means (averages) of these mini-samples grow more 
normal as the number in each mini-sample grows, then their frequency 
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distribution should start to have that nice, symmetric, bell shape. Figure 
5.10b–d shows the frequency distribution of the mini-sample means, 
where each mini-sample has at first five observations (b), then 15 (c), 
then 25 (d). The sample standard deviation s is provided on each plot 
for reference.

The figure says it all. The standard deviation of the sample means 
gets smaller from (a) to (d), decreasing from 13.6 for the original 
observations to 3.0 for the 25 size sample means. The shape of the 
frequency distribution also changes, becoming more and more bell-
like. By Figure 5.10d, the empirical distribution and the normal distri-
bution are nearly indistinguishable. This is typical, for the sample mean 
of 25 or more observations to look approximately normal, and it gives 
us a rule of thumb for applying the normal distribution to a set of data. 
You’ll see this rule of thumb again in several of the case studies that 
follow.

Figure 5.10.  Central limit theorem: the power of N.
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THE POWER OF N

There are many statistical techniques developed for data that follow the 
normal distribution. It is the prom queen of all distributions after all. 
But even if your data do not conform to the normal distribution, it 
doesn’t matter. You can still use the abundance of simple statistical 
techniques that are based on it. As long as you have enough observa-
tions in your dataset, and as long as you’re using a sample mean, your 
conclusions will be accurate.

This is the power of N.
So, if you’re that normal person out there, the 44-year-old woman 

named Smith with a family, a good job, great neighbors, and no political 
opinions, descriptive statistics may be enough. If your data are perfectly 
bell-shaped and well-behaved, you may not need probability distribu-
tions. You may not need approximations, or the central limit theorem, 
or any other rules that help slightly awkward data feel perfectly normal. 
You may not need any of this. At least, not until your next birthday.
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Men love cars. Women can’t drive.

Men love to watch sports. Women love to shop.

Men never stop and ask for directions. Women can’t follow a map.

Men hate to talk about their feelings. Women love to talk on the 
phone.

Men are clueless when it comes to colors. Women are clueless when 
it comes to math.

Men fear commitment. Women fear being single.

Men are logical. Women are intuitive.

Stereotypes. Scientists have been studying them for years. In a 
recent search on Web of ScienceTM, one of the Internet’s largest reposi-
tories for scientific literature, thousands of articles about stereotypes 
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popped up. From misperceptions about religious people to mispercep-
tions about female hockey players, the list of topics is endless. Many 
of these studies set out to disprove a stereotype, showing once and  
for all that people are the same, no matter what gender or hair color  
or sports preferences we have. Some of these studies succeed. Others 
show subtle differences. Still others claim these differences are not so 
subtle.

Maybe you have a favorite stereotype, a sweeping generalization 
you just can’t let go. Are you convinced, for example, that all men are 
insensitive? Maybe you think women are horrible drivers. If you do, 
then prove it. It’s the only way to assert yourself with confidence.

STATISTICIANS LOVE BIG DATASETS AND 
OTHER HALF-TRUTHS

In my twenty years as a statistical researcher, there’s one stereotype 
I’ve run across hundreds of times, and it usually rears its ugly head 
within ten minutes of an initial consultation. It’s the idea that statisti-
cians love data, the more the better. That’s not entirely true. What we 
really love is accurate conclusions, those that make us look smart, 
insightful, and maybe even a little clairvoyant. The only way to get 
accurate conclusions is with really good data, the kind that come from 
a well-designed study, the kind that truly represent the underlying phe-
nomenon we’re trying to characterize. More good data means more 
accurate conclusions. More bad data only means more work for us.

Take estimates, for example. Estimates are frequently used to make 
conclusions about a population. Parameter estimates, values that 
approximate some parameter of a population’s probability distribution, 
are particularly important. The most common parameter estimates 
include the sample mean (an estimate of the population mean), the 
sample standard deviation (an estimate of the population standard devi-
ation), and relative frequencies (an estimate of population proportions 
or probabilities). As good as any given estimate may be, it’s still just a 
best guess constructed from a sample of data. It may be off by a little. 
It may be off by a lot. In other words, there’s some uncertainty associ-
ated with any estimate. How much uncertainty? Confidence intervals 
help us answer this question.
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A confidence interval is a range of numbers surrounding an esti-
mate. This range measures how good your guess is, how much uncer-
tainty is associated with it. A wide confidence interval suggests the 
estimate has a lot of room for error. A narrow confidence interval sug-
gests the estimate is likely to be accurate. Say you have a dataset with 
sample mean 10. A confidence interval of 8.2 to 11.8 means you can 
be confident the true value, the population mean, falls between these 
two values. In other words, the margin of error is ±1.8 on either side 
of your sample mean. A confidence interval of 9.1 to 10.9 is half the 
width of this first interval, suggesting a much smaller margin of error, 
±0.9 on either side of the sample mean. In both cases, the sample mean 
is the same, but the uncertainty associated with this estimate is very 
different.

Confidence intervals can be used not only to find the margin of 
error for an estimate, but also to compare a population to some precon-
ceived notion of what it should be. For example, suppose you set out 
to prove that men fear commitment, your initial hypothesis being that 
40% of all men suffer from this ailment. You and your single girlfriends 
carefully design a study, selecting men at random and confronting them 
with situations where their level of commitment-phobia can be mea-
sured. In the end, 30% of the men in your study fear commitment, with 
a confidence interval of 28 to 32%. If you designed your study properly 
and got good data, you could be confident that between 28 and 32% of 
all men suffer from commitment-phobia. Because the upper limit, 32%, 
is lower than your preconceived notion of 40%, you’d have to conclude 
that men do not fear commitment, at least, not as much as you previ-
ously thought. Stereotype busted.

Let’s see how confidence intervals can be used to look at other 
gender stereotypes.

FINDING CONFIDENCE IN YOUR DATA

Most commonly used confidence intervals rely on a small number of 
sampling distributions. First introduced in the last chapter, a sampling 
distribution is the probability distribution of any estimate or statistic, 
in other words, a value calculated from a dataset. Like any probability 
distribution, the sampling distribution has its own mean and variance, 
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both of which are used to construct a confidence interval. I’ll introduce 
three sampling distributions in this chapter and show how they’re used 
to construct common confidence intervals for a proportion and for the 
mean of a population. These three sampling distributions are so common 
throughout statistics, I’ve summarized them in the table provided in 
Figure 6.1.

Confidence Interval for the Mean of a Population

Suppose you’re convinced all women love to talk on the phone and 
you’d like to prove it. You cajole every woman you know into handing 
over her cell phone bills and you log the number of minutes each one 
has used for the past three months. Even if you’re the most outgoing 
male on the planet, you don’t know every woman in the world. Your 
sample is just a subset of the entire population of women. And because 
you don’t have the phone records of every woman on the planet, any 
estimates you calculate could be off by a little, or a lot. In order to 
assert your stereotype with confidence, you need a margin of error for 
the mean cell phone usage of women. In other words, you need a con-
fidence interval.

Figure 6.1.  Common sample distributions.
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There are two basic confidence intervals for the mean of the popu-
lation, and the one you use depends on what you know going into the 
data analysis. Specifically, if you already know the variance of your 
population with certainty, you can use the simplest type of confidence 
interval, one that relies on concepts already presented in Chapter 5. On 
the other hand, if you don’t know the variance of your population, you 
need to estimate it. In this case, you need a confidence interval that 
takes uncertainty in both the sample mean and sample standard devia-
tion into account. I’ll present both types of confidence intervals, starting 
with the simplest case first.

Known Variance

When you know the population variance, the confidence interval  
for the mean can be constructed from the following sampling 
distribution:

Probability distribution of a z-statistic: For a set of observa-
tions x1, x2, . . . , xN with sample mean x  that follows a normal 
distribution, unknown population mean μ, and known variance 
σ2, the value

Z N
x= − µ

σ
follows a standard normal distribution, in other words a normal 
distribution with mean 0 and variance 1.

The z-statistic is what I think of as a statistical difference, in other 
words, the difference between the sample mean and the true (unknown) 
population mean, scaled to take variation into account. This scaling 
process transforms the difference to a standard normal distribution, 
allowing us to evaluate its size on a common scale.

This result plus a little algebra is all we need to construct a confi-
dence interval, and the process starts with an interval probability. An 
interval probability is the probability a random variable will fall within 
some range, between a lower value, a, and an upper value, b. Illustrated 
in Figure 6.2, this probability represents the shaded area underneath the 
probability distribution function between the two limits. Interval prob-
abilities can be calculated by adding up (or integrating) the probability 
distribution (or density) function for all values between a and b. More 
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commonly, though, they’re calculated using the cumulative distribution 
function. Recall, the cumulative distribution function, or CDF, is the 
probability P{X ≤ x}. As suggested in Figure 6.2, the interval probabil-
ity P{a ≤ X ≤ b} is just the cumulative distribution P{X ≤ b} with the 
region where X ≤ a ignored. This leads to the following useful result:

The interval probability P{a ≤ X ≤ b} is the same as

P P P{ } { } { }.a X b X b X a≤ ≤ = ≤ − ≤

How do interval probabilities apply to confidence intervals? Suppose 
you’d like to find a range −zcrit to zcrit so that the probability the z-statistic 
falls inside this range is high, say 0.95. This is the following interval 
probability:

P{ } . .− ≤ ≤ =z Z zcrit crit 0 95

The z-statistic is defined by

Z N
x= − µ

σ
,

Figure 6.2.  The interval probability.
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so you can make this substitution inside the interval probability and do 
a little algebra to get

P x z
N

x z
N

crit crit− ≤ ≤ +{ } =σ µ σ
0 95. .

This range,

x xz
N

z
N

crit crit− ≤ ≤ +σ µ σ
,

is the 95% confidence interval for the mean μ when the variance is 
known. Note the width of this confidence interval depends on the popu-
lation standard deviation, σ, and the number of observations in your 
sample, N. You’ll find this to be a recurring theme in statistics, that 
the error or uncertainty of a result depends on the variation scaled by  
the sample size. This is because the variance of an estimate, such  
as the sample mean, decreases proportionally with the number of 
samples in a data set. In other words, according to the central limit 
theorem from last chapter, more observations are always better.

There’s one other value that affects the width of the interval, zcrit. 
This is the critical value, the number that makes the interval probability 
P{−zcrit ≤  Z ≤  zcrit} =  0.95 true. Figure 6.3 illustrates the process of 
calculating a critical value. The goal is to find zcrit so that the area 
between −zcrit and zcrit is the specified probability, 0.95 in this case. This 
means the leftovers, the tail probabilities, must add to 1 − 0.95 = 0.05, 
a value denoted by the Greek letter α. This leftover probability α is 
often called the significance level, and each of the two tails make up 
half of this significance level, or α/2  =  0.025. Because two tail 
probabilities—a left tail and a right tail—are included in the probability 
calculation, I’ll call this a two-tailed critical value. This is to distinguish 
it from the one-tailed critical value that will be discussed at length in 
the next chapter.

The left-hand tail in Figure 6.3 is just the cumulative probability 
P{Z ≤ −zcrit}, so the two-tailed critical value zcrit can be calculated as 
the value for which P{Z ≤ −zcrit} = α/2 = 0.025. Most statistics texts 
have comprehensive tables of critical values for every significance level 
you could want, and most of these tables report the values to several 
decimal places. In the real world, however, only a few significance 
levels are commonly used and you rarely have a situation where it 
matters if the critical value is 1.64 or 1.65. So I’ve simplified the typical 
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table and provided critical values to one decimal place in Appendix A, 
Figure b for easy reference. This figure already takes both tails into 
account and so no adjustment to α is necessary. As an example, for a 
95% confidence interval, the two-tailed critical value is zcrit = 2.0.

Suppose you have the phone bills of 20 women and you know the 
standard deviation to be σ = 35 minutes per week. If the sample mean 
(average) is x = 198 minutes per week, the 95% confidence interval for 
the population mean is

198 1 96
35

20
198 1 96

35

20
182 213− +



 −. , . , .or

This range is the margin of error on your sample mean.
It’s natural to take a statement like this and assume there’s a prob-

ability of 0.95 the true mean falls between 182 and 213. But this isn’t 
the case. The true mean is some fixed constant value μ, even if you 
don’t know what it is. The uncertainty in the confidence interval comes 
from the sample estimate x, not μ. So rather than making claims about 
the probability of the population mean μ, you’d instead say something 
like, “I’m 95% confident the mean cell phone usage for women is 

Figure 6.3.  Two-tailed critical values for the standard normal distribution with 
a = 0.05.

a a
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between 182 and 213 minutes per week.” It’s a subtle but important 
distinction.

Unknown Variance

The confidence interval for a mean with known population variance is 
the simplest to construct and the easiest to understand. Unfortunately, 
in my years as a statistician, I’ve only run across this situation a few 
times. Usually, when you don’t know the mean, you don’t know the 
variance either. You need to estimate both. In this case, a z-statistic no 
longer applies. But there is a common distribution that does apply, the 
Student’s t-distribution.

Probability distribution of the t-statistic: for a set of observa-
tions x1, x2, . . . , xN with average x , sample standard deviation 
s, unknown mean μ, and unknown variance σ2, the value

T N
x

s
= − µ

has Student’s t-distribution with N − 1 degrees of freedom.

The t-statistic should look familiar. It’s basically the z-statistic with 
the sample standard deviation s replacing the population standard devi-
ation σ. Like the z-statistic, the t-statistic is a statistical difference, 
scaled to account for the variation in the sample. Like the standard 
normal distribution, the t-distribution has a mean of zero and a sym-
metric, bell-like shape. But these two distributions are not the same. 
Substituting the sample standard deviation for the population standard 
deviation adds uncertainty to the statistic, and so the t-distribution has 
a wider bell shape than its normal counterpart.

One of the ways in which the t-distribution accounts for uncertainty 
in the sample is through the degrees of freedom parameter. Remember, 
most statistical methods rely on an independent sample, a group of 
observations that are independent of one another and representative of 
the population as a whole. The degrees of freedom term measures 
the number of independent values going into a test statistic or estimate; 
in other words, the net sample size. When you start with N data values, 
you have N degrees of freedom. However, you lose one degree 
of freedom for substituting the sample standard deviation for the  
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population standard deviation. This gives a net number of independent 
values  N − 1.

A confidence interval for the mean with unknown variance can be 
calculated just like it was for known variance. You simply set up an 
interval probability for the t-statistic and do a little algebra. There are 
just two differences: the substitution of the sample standard deviation 
s in place of σ, and tcrit, N−1, the α/2 critical value for the t-distribution, 
in place of zcrit. This process is instructive and if you’re comfortable 
with interval probabilities and algebra, I urge you to try it. You should 
get the following interval:

x t
s

N
x t

s

NN N
− +



− −α α

2
1

2
1, ,

, .

The critical value for the t-distribution with N − 1 degrees of freedom 
can be calculated in Excel using TINV. Most statistics texts also provide 
comprehensive tables of critical values for this distribution. I’ve simpli-
fied these tables in Appendix B, which provides two-tailed critical 
values of the t-distribution for the most common confidence levels and 
a handful of sample sizes. For example, on a 95% confidence interval 
for the mean, the critical value for a sample with N − 1 = 20 degrees 
of freedom is 2.1. If you have a number of degrees of freedom that do 
not appear in the table, then you can approximate the critical value by 
averaging the two surrounding values. For a 95% confidence interval, 
15 degrees of freedom is halfway between 10 and 20 degrees of 
freedom, and so the critical value for this case can be approximated by 
(2.2 + 2.1)/2 = 2.15.

Back to estimating women’s weekly cell phone usage. Suppose you 
don’t know the variance of the number of minutes a woman talks on 
her phone every week. You need to estimate it from the data. Suppose 
it comes to s =  35. To construct a confidence interval for the mean, 
you’d use the sample mean 198, sample standard deviation s = 35, and 
N = 20 in the above confidence interval. The α = 0.05 critical value of 
the t-distribution with 19 degrees of freedom is 2.1. Therefore, the 95% 
confidence interval for μ is 181,214.

You might notice the critical value for Student’s t-distribution 
with 19 degrees of freedom (2.1) is larger than the corresponding value 
for the standard normal distribution (1.96). This larger critical value 
makes for a wider confidence interval in the case where the variance 
is not known. This is always the case, that a confidence interval for the 
mean with unknown variance is larger than the corresponding interval 
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for known variance. The increased margin of error is the price you pay 
for not knowing the variance and being forced to estimate it from a 
dataset.

Confidence Interval for a Proportion

Maybe you think all men love to watch sports on TV. To prove this, 
you make an official-looking log sheet and give it to every guy you 
know so they can record how many games, matches, and contests they 
watch in a single weekend. With these data, you could estimate the 
proportion of the men in your sample who watch four, five, or even ten 
games in those two days. But it’s not good enough to prove most men 
spend their weekend on the couch. To state your case with confidence, 
you need to put a margin of error on your estimate.

Like a confidence interval for the mean, the confidence interval for 
a proportion (or probability) starts with the sampling distribution for 
this estimate. You may remember from the last chapter that the number 
of successes in N independent trials is a binomial random variable, in 
other words, it can be described by the binomial distribution. This same 
distribution can be used to describe the number of game-watching 
couch potatoes. In particular, suppose you have 35 men in your study, 
and you define a sports-lover as a man who watches at least three games 
in a weekend. If your sample is a random sample, then the number of 
sports-lovers follows the binomial distribution with N =  35 men and 
unknown probability p that any one man is into sports.

To construct a confidence interval around p, you could start with 
the binomial distribution and an interval probability and perform the 
required algebraic manipulations, but the binomial distribution is dif-
ficult to work with. Instead, most people use the normal approximation 
to the binomial distribution. This approximation was presented in the 
last chapter and gives the following sampling distribution.

Probability distribution of a proportion: If p̂ is the proportion 
of successes in a sample having N observations, and if this 
sample represents a population with true (unknown) success 
probability p, then when N p̂ ≥ 5 and N p1 5−( ) ≥ˆ , the statistic

Z
N p p

N p p
= −

−
ˆ

ˆ( ˆ )1

can be approximated by the standard normal distribution.
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From here, calculating the confidence interval follows exactly  
the same path as the confidence interval for a population mean, and 
once again, if you’re mathematically inclined, I urge you to try it for 
yourself. A little algebra gives the following confidence interval for a 
population proportion:
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ˆ ˆ
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.p z
p p

N
p z

p p

N
− −( ) + −( )





α α
2 2

1 1

Like the confidence interval for the population mean with known vari-
ance, the critical value here can be calculated from the NORMINV 
function in Excel or by referring to the table of two-tailed critical 
z-values in Appendix A.

Suppose you give your sports log sheet to 35 men, and each one 
returns the sheet complete with a tally of the number of games he 
watched over a particular weekend. You calculate the proportion of men 
who watched at least three games, and you get 42%, or ˆ .p = 0 42. For 
a 95% confidence interval, the critical value is z0.025 = 1.96 and so the 
95% confidence interval on the proportion of men who watch at least 
three games per weekend is

ˆ . .
. .

. . .

p = ± ( )

= ±

0 42 1 96
0 42 0 78

35
0 42 0 19

This gives a range of 0.23 to 0.61. In other words, you can be 95% 
confident that the number of weekend sports-watching warriors is 
between 23 and 61%.

Confidence intervals are often reported in this way, as a sample 
proportion (or mean) plus or minus some margin of error. This form is 
convenient. It simplifies the mathematical expression and emphasizes 
the margin of error. Figure 6.4 presents confidence intervals for the 
mean and proportion in this way for easy reference.

ARE MEN INSENSITIVE? ARE WOMEN 
ILLOGICAL?

There are probably lots of highly scientific studies that have tried to 
prove or disprove these stereotypes, studies rooted in psychology, and 
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taking into account hormones, anatomy, and brain chemistry. This isn’t 
one of those studies.

I have no idea how to measure whether the logic neurons are dif-
ferent between men and women. Nor do I have any idea how to measure 
activity in the sensitivity center of a person’s brain. In fact, I don’t even 
know if there is such a thing as a logic neuron or a sensitivity center. 
No, this study is anything but a highly scientific, controlled experiment. 
It doesn’t even directly measure men’s sensitivity and women’s logical 
thinking. In other words, any conclusions you draw from this chapter 
will be drawn at your own risk.

Since I can’t measure sensitivity and logical thought directly, I’ll 
scale down my questions accordingly. In my experience, men often 
complain that women are illogical simply because women appear to be 
more emotional. Likewise, women often complain that men are insensi-
tive because they seem to be more interested in facts and figures than 
human emotions. If this is true, then the driving force behind these two 
stereotypes has more to do with emotional reactions than a person’s 
capacity for sensitivity or logical thought. This is something I can 
measure. But rather than making complex arguments based on psychol-
ogy and neuroscience, I’ll simply ask people what they’re thinking (or 
feeling, as the case may be).

This is apparently what Isabel Myers was thinking in the mid-1900s 
when she proposed a simple method for typing personalities. She 

Figure 6.4.  Common confidence intervals.
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argued that a person’s behavior depends on what he or she is thinking. 
So why not just present a person with situations and ask how he or she 
would handle it? This is what she did, and with her mother, Katherine 
Briggs, she created one of the most widely used personality tests of any 
ever developed.

The Myers-Briggs personality test (http://www.myersbriggs.org/) 
is a simple test with seventy multiple choice questions, each question 
having two possible answers. It doesn’t measure intelligence, or psy-
chological health. It only characterizes how a person thinks about and 
reacts to the world. The test places people into categories based on four 
characteristics, each of these four characteristics represented by a letter. 
The first characteristic, represented by an E or I, indicates whether you 
are extroverted or introverted. An extrovert draws energy from social-
izing with others, while an introvert draws energy from being alone. 
The second characteristic, indicated by an S or N, indicates whether 
you more sensing or intuitive. A sensing person tends to focus on the 
outside world, and an intuitive person tends to add his or her own 
internal meaning and interpretation to a situation. The third character-
istic, represented by T or F, refers to thinking or feeling. A thinking 
person tends to focus more on facts and logic, while a feeling person 
tends to focus more on harmony and the feelings of others. The last 
characteristic, indicated by a J or P, refers to judging or perceiving. A 
judging person likes to have things decided upon and scheduled, while 
a perceiving person likes to keep his or her options open.

These eight letters combine into 16 different personality types, the 
idea being that people of the same type share certain characteristics. 
For example, the letters ESTJ (extroverted-sensing-thinking-judging) 
refer to a personality type known as the Supervisor. Like the name 
implies, Supervisors have a tendency to take charge of a situation, 
making sure everybody toes the line, giving direction as needed. 
They’re also down to earth, reliable, and willing to donate their time 
and energy to their favorite organizations. You probably know a few 
Supervisors. Most people do. It’s estimated they make up about 10% 
of the population (Keirsey 1998).

If men are more interested in facts, and women more interested in 
feelings, these tendencies should show up in the results of the Myers-
Briggs personality test, specifically through the answers to the thinking 
versus feeling (T vs. F) questions. There are twenty such questions on 
the test (Keirsey 1998), and if these stereotypes hold, men will tend to 

http://www.myersbriggs.org/
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be what I’ll call T people, those who pick T answers more often than 
F answers. Conversely, women will tend to be F people, those who pick 
F answers most often.

The version of the Myers-Briggs test printed in Please Understand 
Me (Keirsey 1998) clearly indicates which questions go with which 
characteristics, and a written test, as opposed to one of the many online 
tests, gives me access to the number of T versus F answers. So my 
experimental plan was to get men and women to take this test, estimate 
the mean number of T answers for men and women, and put confidence 
bounds on the result. Because the sample mean of 25 or more observa-
tions can generally be approximated by the normal distribution (see the 
last chapter for a discussion of this), my goal was to get at least 50 
tests, 25 from men and 25 from women.

Because any statistical analysis is only as good as the data you feed 
into it, it’s important to collect a sample that represents the population 
as a whole. For example, suppose you’re estimating the unwillingness 
of men to stop and ask for directions. And suppose you only collect 
data from your five older brothers. Your estimate and your confidence 
interval could be skewed by the fact that you come from a long line of 
very stubborn people. In other words, based on a few hard-headed men, 
your brothers, you might falsely conclude that all men refuse to ask for 
directions. Ever. To prevent such false stereotypes from taking root in 
your brain and coming back to bite you later, you need a proper sample 
to work with.

The best type of sample for my study would be a random sample. 
And this is what I gathered. Well, sort of. I actually carried around a 
copy of the test with me for a few weeks and begged virtually every 
adult I spoke with to take it. (I stayed away from work, however, 
because most of my colleagues are statisticians or scientists and too 
many of them could really bias my sample). People weren’t always 
thrilled about sharing this kind of information with a strange, portfolio-
wielding woman. Some might have even found me a little creepy. But 
almost everybody cooperated with me, and in the end, I got 51 com-
pleted tests. Thanks to all the family, friends, acquaintances, and total 
strangers who participated.

Because the group included people I knew and strangers I happened 
across, this isn’t a classic random sample. So, I also asked all of  
the participants their age and occupation, just to make sure I wasn’t 
getting an overabundance of, say, 37-year-old accountants in my 
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dataset. Fortunately, I didn’t. My test subjects were between the ages 
of 19 and 70. Among them were homemakers, students, retirees, 
doctors, scientists, businessmen, teachers, a pipe fitter, an editor, and 
even a city councilman.

It’s always a good idea to do what I call a sanity check, just to 
make sure your data are consistent with what you expect, but it’s espe-
cially important when you aren’t working with a pure random sample. 
I addition to checking the age and occupations of my volunteers, I also 
wanted to make sure the overall proportion of T people and F people 
is consistent with the population as a whole. Of the 51 people in my 
study, 23 (45%) were T people, 23 (45%) were F people, and five (10%) 
answered equal numbers of both. With 51 test subjects and a relative 
frequency of 0.45, the 95% confidence interval on the proportion of T 
people is

0 45 1 96
0 45 0 55

51
0 45 0 14. .

. ( . )
. . .± = ±

In other words, according to my sample, the proportion of T people, 
those who gave mostly T answers to the T versus F questions, is 
between 0.31 and 0.59, with a best estimate of 0.45. The Myers-Briggs 
Foundation reports a population percentage of T people to be 40.2%, 
a proportion of 0.40 (Myers-Briggs Foundation 2012). Since this popu-
lation proportion falls within the margin of error for my study, I can 
claim they’re consistent with one another.

The agreement between my result and the Myers-Briggs Founda-
tion numbers gives me a good feeling about the data I’ve collected, but 
it doesn’t answer the question at hand. To determine if men tend to be 
T people and women tend to be F people, I need to split my sample 
into two groups: men and women. If the proportion of men who are T 
people is higher than 0.40, the population value, the stereotype about 
men being fact-focused is supported. Likewise, if the proportion of 
women who are T people is lower than 0.40, then the stereotype about 
women being emotional is supported.

Out of 27 women in the study, 19% tested as T people. The 95% 
confidence interval for the proportion 0.19 is (0.04, 0.33). The upper 
limit on this confidence interval is below the total population propor-
tion, suggesting women do tend to be F people. Out of 24 men in the 
study, 75% tested as T people. The 95% confidence interval on this 
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proportion, 0.75 is (0.58,0.92). The lower limit on this interval is above 
the population proportion, suggesting men are more likely to be T 
people. These results are illustrated in Figure 6.5.

This analysis may support the stereotypes, but it doesn’t tell the 
whole story. On this personality test, a person is categorized into the 
thinking or feeling group based on a majority of answers to 20 ques-
tions. A person who gives T answers to all twenty questions is catego-
rized the same as a person who gives T answers to 11 questions, even 
though the reliance on facts of these two individuals may be completely 
different. So, in addition to looking at the proportion of T people, it 
might be useful to look at the number of T answers for men and women 
to see how much they differ from ten, the midpoint suggesting equal T 
and F tendencies. Figure 6.6 plots the frequency distribution of the 
number of T answers for men and women. The sample mean and stan-
dard deviation are added for reference.

Figure 6.6 shows that while the average number of T answers is 
higher for men than women, the two frequency distributions overlap 
quite a bit and both of them straddle the midpoint of 10. Men vary in 
their number of T answers from eight to 19, a range of 11. Women vary 
even more, ranging from zero all the way up to 15. This means that 
while men tend to be T people and women tend to be F people, there 
are plenty of people who don’t fit this profile. Let’s see how these 
results translate into confidence intervals for the mean.

Figure 6.5.  Confidence intervals for the proportion of T people.
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For these data, the variance of the population is unknown and so 
the 95% confidence interval for the mean uses the “variance unknown” 
formula in Figure 6.4. For men, the sample mean is 12.5, the sample 
standard deviation is 3.0, the number of observations is N = 24, and 
the α = 0.05 two-tailed critical value tcrit, 23 = 2.1. This gives a confi-
dence interval of

Figure 6.6.  Frequency distribution for number of T answers.
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In other words, with 95% confidence, the true mean number of T  
answers for men is between 11.3 and 13.8. The lower confidence bound 
is above ten, suggesting men really do tend to be more T-like. But with 
a lower limit of just over ten T questions, it isn’t by very much. For 
women, the sample mean is 7.3, the standard deviation is 4.1, N = 27, 
and the α =  0.05 two-tailed critical value for the t-distribution with 
N −  1 =  26 degrees of freedom is tcrit, 23 =  2.1, giving a confidence 
interval of 5.7 to 9.0. The upper limit is just below 10, suggesting 
women are more F-like. But again, not by much. These results are 
illustrated in Figure 6.7.

Figure 6.7 shows the average man is more T-like and the average 
woman more F-like. But does this mean men are more T-like than 
women? In other words, is the difference between the two sexes statisti-
cally significant, different than you’d expect based on random variation 
alone? Confidence intervals can be used to compare populations to  
one another, but this is not what they’re meant to do and so the com-
parison must be done carefully. When the confidence intervals of two 
populations do not overlap, then we usually say there is a significant 
difference. When they do overlap, the difference may or may not be 
significant, and unless you can apply some more sophisticated statisti-
cal reasoning to the data, you need a direct comparison between the 
two groups to be sure. This is the subject of the next chapter.

Figure 6.7.  Confidence intervals for the number of T answers.
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As Figure 6.7 shows, the 95% confidence interval for men and 
women do not overlap, and so the average difference between the sexes 
is statistically significant. Is it practically significant? Is the difference 
really enough to validate a stereotype? That’s the important question. 
For both groups, the average number of T answers is close the midpoint 
value of ten. More than a third of women were either T people or within 
one question of being classified so. More than a third of men were either 
F people or within one question of earning that label. In other words, 
while there does appear to be a real difference, there are still plenty of 
T women and plenty of F men.

THE BATTLE OF THE SEXES RAGES ON

How you interpret these results is up to you. You could argue whether 
this study proves men are more logical than women or simply more 
insensitive. You could argue whether it proves women are more empa-
thetic than men or just more irrational. You could also argue that an 
average difference of just a few T questions on a personality test says 
nothing at all about men and women, particularly when there are so 
many men and women who don’t fit the average profile. However  
you read them, these results can only add ammunition to the battle  
of the sexes, giving you one more way to assert your stereotypes with 
confidence.
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Picture this: Tokyo in ruins. Godzilla’s back, and he’s on the rampage. 
Buildings fall and cars crumple under the force of the giant lizard. 
Japanese mobs flee in panic. Suddenly, across the smoky skyline, a 
rustle disturbs the trees of a distant forest. King Kong, the 50-foot 
gorilla, emerges, and he’s angry. But before he can crush his first 
victim, the two monsters spot one another. Godzilla screeches and flails 
his arms. King Kong roars and beats his chest. An epic battle ensues.

In the 1962 classic film King Kong vs. Godzilla, the monsters fight 
a long, drawn-out battle, gradually moving toward the beach until they 
both disappear into the ocean. Eventually, Kong is spotted swimming 
back to his home island. Godzilla isn’t seen again. It appears the ape 
has beaten the lizard. But a monster’s success isn’t only measured by 
his destructive power. In this age of big movie budgets and bottom 
lines, popularity is the real king. Without lasting appeal, even the most 
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terrifying freak of nature won’t live to terrorize Tokyo another day. So, 
who’s more popular, King Kong or Godzilla? In this chapter, hypothesis 
tests will be used to settle the battle of the movie monsters.

HYPOTHESIS TESTS: LET THE 
JUDGING BEGIN

Hypothesis tests are the Supreme Court judges of statistics. They take 
evidence in the form of a sample of data and make judgments about some 
population. Every hypothesis test has three parts to it: (1) two competing 
claims about a population, (2) a test statistic that mathematically weighs 
the two claims against one another, and (3) a decision criterion, or rule 
for accepting one of the two claims and rejecting the other.

All hypothesis tests start with two competing claims, or hypothe-
ses. The null hypothesis, or H0, is a default statement about a popula-
tion, the claim of innocence, if you will. The alternate hypothesis, HA, 
is the competing statement, the guilty claim. The purpose of a hypoth-
esis test is to determine if there’s enough evidence to reject H0 in favor 
of HA, in other words, to prove guilt beyond a reasonable doubt. For 
example, in the hypothesis test

H0: μ = 0 vs.

HA: μ = 1,

the population mean is what’s being judged. The null hypothesis claims 
it is zero. The alternate hypothesis claims it is one. The hypothesis test 
for these two competing claims would look at the data and determine 
if there’s enough evidence to reject the default claim that the population 
mean is zero, thereby accepting the claim that it is one.

Like judges in a courtroom, every hypothesis test needs evidence 
on which to base its conclusions. A test statistic is just such evidence. 
It’s a statistic, a value calculated from a sample, used to weigh the 
likelihood of one hypothesis over the other. Typically, the test statistic 
is a combination of a sample estimate scaled by its associated variation. 
For example, the test statistic for the hypothesis H0: μ = 0 versus HA: 
μ = 1 is a function of the sample mean, the standard deviation, and the 
number of observations in a sample.

The decision threshold provides the rule for judging your hypoth-
eses. The evidence, the test statistic, is compared to this decision 



Two Giant Monsters on One Small Island  111

threshold. If it falls on one side of this threshold, you accept the null 
hypothesis H0. If it falls on the other, you reject it in favor of HA. There 
are two ways to express the decision threshold, one based on a critical 
value for the test statistic and the other based on a tail probability for 
the test statistic. As you’ll see later in the chapter, these two different 
thresholds always lead to the same conclusion, and so one of them 
isn’t necessarily better than the other. It’s simply a matter of how you 
prefer to express your results.

There are hypothesis tests for just about any population parameter 
you can imagine—mean, variance, proportion—and while the details of 
each are different, all of them use a test statistic and a decision criterion 
to pit two competing hypotheses against one another. In this chapter, I’ll 
introduce three of the most commonly used hypothesis tests. For others, 
I refer you to one of the textbooks listed at the end of this book.

TWO GIANT MONSTERS ON ONE 
SMALL ISLAND

King Kong first appeared on the big screen in the 1933 classic horror 
film named after him. In the movie, this giant, apelike creature is  
discovered living on remote Skull Island, a brutal place where he must 
defend himself against living dinosaurs and other atrocities, and where 
the islanders must sacrifice virgins to the fifty-foot beast in order to keep 
his rage from boiling over. All this changes when a group of modern 
explorers discover the monster. Using one of their own—a young 
actress named Ann Darrow—for bait, the explorers capture the beast 
and transport him to New York City where they put him on display for 
the world to see. But there’s a wrinkle in this plan. Kong has developed 
a serious crush on Ann Darrow, and betrayal only adds to his rather 
significant anger issues. He breaks free from confinement and releases 
his rage on the Big Apple, storming the city in search of his crush and 
causing destruction in the process. Eventually, the beast ends up on top 
of the Empire State Building, clutching his love interest in one hand and 
fending off a swarm of helicopters with the other. In the end, Kong falls 
off the building, landing in a pile of lifeless fangs and fur.

Some twenty years younger than Kong, Godzilla first appeared in 
the 1954 movie sharing the lizard’s name. The Japanese authorities 
grow concerned when ships begin exploding off the coast of their small 
country. A research party is sent to investigate. They learn a giant lizard 
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has been wreaking havoc on nearby Odo Island, and when they visit, 
they get their first glimpse of the creature. The research party barely 
has time to alert the authorities before Godzilla heads for Tokyo and 
goes on the rampage, with no apparent motive other than the complete 
destruction of all things Japanese. Nothing seems to stop the monster, 
not fire, not electricity. Ultimately, the only thing that defeats Godzilla 
is a strange bomb-like device planted in the harbor by the scientist who 
developed it. The giant lizard settles down for an underwater nap and 
the scientist detonates the device, sacrificing his own life in order to 
kill the beast.

Of course, death cannot stop the likes of Kong and Godzilla. Both 
monsters became legends the moment they first appeared. Between the 
two of them, they’ve starred in countless movies, television shows, 
comic books, and video games. They’ve been the inspiration for action 
figures, cartoons, and just about any type of merchandising rip-off you 
can imagine. And there are literally thousands of websites that mention 
these two creatures, many of them touting the awesomeness of one over 
the other.

So does Godzilla or King Kong make the better movie monster? 
I’ll come right out and admit that for me, it’s Kong. Here’s why:

•	 Kong came first.

•	 Kong was born on a tropical island. Godzilla was born in a 
nuclear explosion.

•	 Kong only has morning breath. Godzilla has atomic breath.

•	 Kong wears a thick fur coat. Godzilla wears scales.

•	 Kong has empathy and near human intelligence. Godzilla has 
scales.

•	 In the end, Kong gets the girl. Godzilla only gets more scales.

Of course, this is just one person’s opinion. If I really want to prove 
Kong is the better monster, I need an unbiased way to compare the two 
of them, something that takes into account more than just my own 
preferences. That’s why I’m going directly to the biggest repository of 
opinions in the world. The Internet. And I’ll be using one of the most 
ubiquitous data sources out there. The top ten list.

Don’t get me wrong, I’m not making a top ten list. That’s already 
been done, over and over again. A recent Google search for “top ten 



Godzilla versus Kong  113

movie monsters” resulted in over 11,000,000 hits. Not all of those web 
pages have what I need, some of them don’t have lists at all, some point 
to others’ lists, and still others focus on modern slasher movie villains 
like Freddy Krueger and Jason. But even if 99% of those links are 
useless for comparing Godzilla to King Kong, that still gives me over 
100,000 top ten classic movie monster lists made by as many different 
monster movie fans. That’s a good sample by anyone’s definition.

So who makes these lists? Television channels, newspapers, special 
interest publications, film critics, bloggers, and random movie fans. 
Some are polls of readers or viewers, but most are simply the opinion 
of one person. By taking a sample of these many top ten lists, I can 
reach beyond the opinion of one individual and make conclusions that 
apply to a whole world of Internet users.

This was my data collection plan: to randomly select at least sixty 
top ten classic movie monster lists from the Internet—you’ll see why 
sixty a little later—and compare the rankings for Godzilla and King 
Kong across these lists. The creature that ranks higher wins.

GODZILLA VERSUS KONG

After a couple hours of searching, I had Godzilla and Kong rankings 
from sixty top ten classic movie monster lists posted from as many dif-
ferent sources. From a quick look at the data, it isn’t obvious who wins. 
For example, ReelzChannel TV recently conducted an online poll of its 
viewers and came up with a top ten list. Godzilla ranked number six. 
Kong didn’t make the list. BBC News also has a top ten ranking, this 
one put together by a film critic. King Kong took the #1 spot on this list. 
Godzilla didn’t appear anywhere. With this kind of variation in the rank-
ings, it’ll take more than a quick look at the data to pick a winner.

Before diving into the statistical analysis, I need to point out one 
important issue with these data. Among the top ten lists I found, some 
came from a poll of many people. Other lists were simply the opinion 
of one film critic or movie fan. Both types of lists rank the monsters 
from one to ten (or higher), and on the surface, it might seem they’re 
perfectly compatible. But after after the last few chapters, I hope you’re 
beginning to appreciate the subtle but important difference between a 
single data value, one person’s opinion, and an estimate calculated from 
lots of data values, the results of a poll. The central limit theorem from 
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Chapter 4 tells us that the variance of an estimate decreases as the 
number of samples increases. This means the variance of the rankings 
from a poll is smaller than the variance of the rankings put together in 
one person’s head. In other words, the two types of lists have different 
statistical properties.

This is a problem. Virtually all basic data analysis methods assume 
the individual observations have the same mean, variance, and proba-
bility distribution. The analysis I’m about to present is no different. I 
could ignore this assumption and go forward, combining the two types 
of lists without regard to how they were constructed. But if there are 
enough of these differences between observations, any estimate of the 
population variance will be inaccurate and so will my conclusions. 
Besides, this problem has an easy fix. If I simply remove the small 
number of polls in my dataset—there were only three—all my rankings 
will be from individuals and so every observation will have the same 
basic statistical properties. This is what I did.

Goodness-of-Fit Tests

Figure 7.1 plots the frequency distribution of the 57 remaining rankings 
for Godzilla (a) and King Kong (b). In the figure, the bin labeled “>10” 
represents the fraction of lists that didn’t include the monster. Given 
the enduring popularity of both creatures, it’s no surprise that both 
frequency distributions are concentrated around the top three spots. But 
is this concentration of #1–#3 rankings statistically significant, in other 
words, more than you’d expect by random variation alone? A goodness-
of-fit test can help us find out.

A goodness-of-fit test is a hypothesis test for judging whether or 
not a frequency distribution conforms to some (theoretical) probability 
distribution. In general, if you have a population with M categories, the 
two competing hypotheses for a goodness-of-fit test are

H0: p1 = q1, p2 = q2, . . . , pM = qM vs.

HA: At least one pk is not equal to its corresponding qk.

where the pk values are the relative frequencies for the population 
you’re testing, and the qk values are the corresponding theoretical prob-
ability values.
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For example, suppose the movie monster rankings are truly random 
and the concentration of observations in the top three spots is due to 
random chance. In this case, the frequency distributions follow a discrete 
uniform distribution. First shown in Figure 5.2b, the discrete uniform 
distribution is a common probability distribution where all values have 
the same probability of occurring. A six-sided die, for example, follows 
a uniform distribution with possible values ranging from one to six. If it 

Figure 7.1.  Frequency distribution for movie monster rankings.
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is indeed the case that both monsters’ rankings conform to the uniform 
distribution, then they are just as likely to be ranked #10 as #1, indicating 
there is little or no consensus among monster movie fans. To test this 
hypothesis, I’ll set all of the qk to the same value, and since there are 
M = 11 categories, that means every qk = 1/11.

Figure 7.2 shows the frequencies of rankings for each monster from 
my sample of data. For Godzilla, these frequencies range from zero to 
14. For Kong, they range from one to thirteen. I’ve also included the 
frequencies you’d expect if the rankings were purely random, in other 
words,  the result of rolling an 11-sided die 57 times. This expected 
value is just the number of rolls, 57, multiplied by the uniform probabil-
ity for each ranking, qk = 1/11.

The test statistic for a goodness-of-fit test measures the distance, 
or deviation between the observed frequencies and the frequencies 
you’d expect if your data followed the discrete uniform distribution. 
For a population with M categories, the formula for this test statistic is

Figure 7.2.  Frequency table of Godzilla and Kong rankings.
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Here Ok refers to the observed frequencies (column one or two of the 
table in Figure 7.2) and Ek refers to the expected frequencies (column 
three).The test statistic for Godzilla’s frequencies is
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And for King Kong, this test statistic is
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A side note here. Because we’re comparing the movie monster rankings 
to the uniform distribution, the expected frequencies for each category 
are all the same. But they don’t have to be. In other words, they can be 
different from category to category. This χ2 statistic can be used to test 
any discrete distribution, as long as the probabilities (and therefore 
expected frequencies) are all positive and they sum to one. To calculate 
the expected frequencies for any discrete probability distribution, you’d 
multiply the category probabilities by the total number of observations.

The statistic χ2 is called a chi-squared statistic. And if H0 is true, 
this statistic approximately follows the following sample distribution. 

Probability distribution of the chi-squared test statistic: When 
all of the expected frequencies are at least five, and when H0 
is true, the chi-squared statistic approximately follows the chi-
squared distribution with M − 1 degrees of freedom, where M 
is the number of categories in the population.

Figure 7.3 plots the chi-squared distribution for M = 11 categories 
(ten degrees of freedom). This distribution is decidedly non-normal. 
Because the test statistic is a sum of squared distances, the value must 
always be positive. It’s also right-skewed, with a long tail. Such is 
always the case for the chi-squared distribution.

The test statistic χ2 measures the squared distance between the 
observed frequencies and those you’d expect if H0 were true. If this 
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distance is small, then the evidence is strongly in favor of the null 
hypothesis. If this distance is large, then the evidence is in favor of HA. 
How large is large? That’s what the decision threshold tells us. If χ2 is 
smaller than the decision threshold, then we accept H0. Otherwise, we 
reject this null hypothesis in favor of HA.

For all hypothesis tests, the decision threshold is determined by the 
error probability for the test. An error probability is the probability 
you’ll make the wrong conclusion, and it’s a value you specify when 
performing the test. There are two types of error probabilities: (1) the 
probability you’ll reject H0 when H0 is true, and (2) the probability 
you’ll accept H0 when HA is true. The decision threshold comes from 
the first error probability, what we call the type I error probability.

Suppose you’d like the probability you’ll wrongly reject H0 to be 
less than some small value α. The test is set up so that you reject H0 if 
χ2 ≥ kcrit, and so this error probability can be written as

P reject H H  true P H  truecrit{ | } { | } .0 0
2

0= ≥ <χ αk

This is a conditional probability given the null hypothesis is true, and 
so the sample distribution for χ2 tells us this test statistic follows the 
chi-squared distribution.

Figure 7.3.  The chi-squared distribution.
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Since you know the probability distribution for χ2, you can use it 
to find the critical value kcrit, and this process is just like the one used 
for confidence intervals in the last chapter. There’s only one difference. 
For confidence intervals, you use a two-tailed critical value because 
you’re looking for a range of numbers that bound the margin of error 
for your estimate. For a goodness-of-fit test, you use a one-tailed critical 
value because you only care about the right tail, the area where the 
chi-squared distance is too large to be the result of random chance. 
One-tailed critical values for common α and different degrees of 
freedom are provided in Appendix C for the chi-squared distribution. 
For the Godzilla and King Kong rankings, the number of categories is 
11. Setting the error probability α = 0.05 and the degrees of freedom 
to 10 for this test gives kcrit = 18.3.

The rest of the hypothesis test is simple. You just take your test 
statistic χ2 and compare it to kcrit. If χ2  ≤  kcrit, then accept the null 
hypothesis. If χ2 > kcrit, then reject H0 in favor of HA. For the monster 
rankings, kcrit = 18.31. χGODZILLA

2 31 1= .  and χKONG
2 34 2= . , both of which 

are greater than kcrit. So in both cases, you’d reject the null hypothesis 
that the monster rankings follow a uniform distribution. In other words, 
neither Godzilla’s rankings nor King Kong’s rankings are consistent 
with the rolling of an 11-sided die. The differences in frequencies seen 
in Figure 7.1 are real and not the result of random fluctuation.

For all hypothesis tests, basic or advanced, this process is the same. 
A test statistic is calculated and compared with the critical value for 
the relevant sample distribution. However, often you’ll see the results 
reported as a p-value and not some test statistic/decision threshold 
comparison. A p-value is a tail probability, just like the error probability 
used to construct the decision threshold. The p-value measures the 
likelihood of the test statistic being what it is purely by chance. In other 
words, the p-value expresses the probability, under the null hypothesis, 
that your test statistic is at least as large as what you observed.

p observed-value P H  true= ≥{ | }.χ χ2
0

2

If your test statistic is small, then the p-value will be large. This means 
that the value of your test statistic has a high probability under the null 
hypothesis, and this gives weight to H0. If your test statistic is large, the 
p-value is small. In this case, the value of your test statistic is unlikely 
under the null hypothesis, giving more weight to HA.
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Because it’s based on a probability and not a hard-to-interpret test 
statistic value, the p-value is often used in place of a test statistic to 
perform a hypothesis test. This process is simple. If the p-value is larger 
than α, your test statistic is reasonably likely under the null hypothesis,  
and so there is not enough evidence to reject H0. If the p-value is smaller 
than α, then the test statistic highly unlikely under the null hypothesis, 
and so H0 should be rejected in favor of HA. Even though the two pro-
cesses are different, they always end up with the same conclusion. This 
is because the p-value is calculated from the test statistic and kcrit is cal-
culated from α. This relationship between the test statistic, the decision 
threshold, α, and the p-value are illustrated in Figure 7.4.

Figure 7.4.  The relationship between p-values and critical values.
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Tests for the Mean of a Population

The goodness-of-fit test tells us whether the monster rankings fit a 
uniform distribution or not, but they don’t determine which monster 
wins the popularity contest. For this, you need a head-to-head compari-
son, a test that can tell you if the mean ranking of the two monsters is 
the same or different.

There are several hypothesis tests for the mean of a population, and 
the one to use depends on your specific hypotheses and whether or not 
you know the variance of the population beforehand. All of the most 
common tests assume your data follow a normal distribution, but thanks 
to the central limit theorem, they work for non-normal populations as 
well, so long as you have more than about 25 observations in your 
sample.

Known Variance

The simplest test for the mean works when the variance of your popula-
tion is known beforehand, so for the moment, let’s assume I know this 
to be σ2. Suppose I want to test the following claims:

H0: μ = μ0 vs.

HA: μ > μ0.

Like the confidence interval for a mean with known variance, this 
hypothesis test relies on the z-statistic discussed in the last two chapters. 
In other words, if x is your sample mean, μ is the population mean, σ2 
is the population variance, and N is the number of observations in your 
sample, then Z N x= −( )µ σ  has a standard normal distribution. 
This gives way to the test statistic for this hypothesis test, which is

Z N
x= − µ

σ
0 .

Because I’m looking to determine if the mean is equal to or greater 
than μ0, the decision threshold will be some value zcrit, where if Z > zcrit, 
the null hypothesis will be rejected an I’ll conclude μ > μ0. Just like a 
goodness-of-fit test, the critical value zcrit is determined by the error 
probability you want to achieve

P H  truecrit{ | } .Z z> =0 α
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When H0 is true (as it is in this conditional probability), Z follows a 
standard normal distribution and so the critical threshold zcrit can be 
calculated as a one-tailed critical value for the standard normal distribu-
tion. This is provided in Appendix A.

For example, suppose you have a dataset with sample mean x = 1, 
population variance σ2 = 4, and number of observations N = 25, and 
you’d like to test the hypothesis H0: μ = 0 versus HA: μ > 0. The test 
statistic is Z = −( ) =25 1 0 2 2 5. . If Z is large enough, in other words, 
larger than the decision threshold zcrit, then the null hypothesis will be 
rejected and you’ll conclude μ > 0. Otherwise, you’ll stick with the null 
hypothesis that μ  =  0. For α  =  0.05, the one-tailed critical value 
zcrit = 1.64. Because the test statistic Z = 2.5 is larger than this decision 
threshold, the null hypothesis is rejected and I conclude that μ > 0.

The alternate hypothesis HA: μ > μ0 is just one of many possible 
variations people use in testing the mean. Instead of looking at the 
claim HA: μ > μ0, you might be interested in the claim HA: μ < μ0. Or, 
you might not care whether the mean is greater than or less than μ0, 
only different, in which case you’d be most interested in the alternate 
hypothesis HA: μ ≠ μ0. Each of these alternate hypotheses uses the exact 
same z-statistic as the test statistic, but the decision threshold for each 
is different. For example, to test the hypotheses H0: μ = 0 versus HA: 
μ < 0, you’d look for the Z statistic to be too small to occur by chance; 
in fact, you’d look for it to be less than zero. So, the decision criterion 
for this test would be to reject the null hypothesis if Z < −zcrit, the one-
tailed critical value for the standard normal distribution. To test the 
claim that HA: μ ≠ 0, you’d use the same test statistic, but in this case 
you’d look for Z to be excessively large or small, in other words, greater 
than zcrit or less than −zcrit. In this case, you’d use the two-tailed critical 
value and reject the null hypothesis if your test statistic was outside the 
range −zcrit to zcrit. These different variations on a hypothesis test will 
be illustrated in sections to come.

Unknown Variance: The t-Test

In the real world, if you don’t know the population mean, you usually 
don’t know the population variance. This means you must use a hypoth-
esis test for unknown variance. The test statistic in this case is very 
similar to the previous case where the variance is known; you simply 
substitute the sample variance for the population variance, giving a 
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t-statistic instead of a z-statistic. Because a t-statistic has a Student 
t-distribution under the null hypothesis, you then calculate the critical 
value using this probability distribution. If x is your sample mean, s2 
is the sample variance, and N is the number of observations in your 
sample, then the test statistic is

T N
x

s
= − µ0

and the decision threshold for this test can be calculated using the 
inverse t-distribution function.

Suppose you have a dataset with sample mean x = 1, sample vari-
ance s2 =  4, and number of observations N =  25, and you’d like to 
test the hypothesis H0: μ =  0 versus HA: μ >  0. The test statistic is 
T = −( ) =25 1 0 2 2 5. . If T is large enough, in other words, larger than 
a decision threshold tcrit, then the null hypothesis will be rejected and 
you’ll conclude μ > 0. Otherwise, you’ll accept that the mean of your 
population is zero. The one-tailed critical value for the t-distribution 
with α = 0.05 and N − 1 = 24 degrees of freedom is 1.71. Because the 
test statistic Z = 2.5 is larger than this threshold of 1.71, the null hypoth-
esis is rejected and I conclude that μ > 0.

This test for the mean of a population is only set up to compare a 
single sample to some pre-specified constant value like μ0 = 0. With a 
little data manipulation, however, it can be used to compare Godzilla to 
King Kong. This is because the two monsters’ rankings are paired. Paired 
data are exactly what the term implies, observations collected in pairs. 
For each list, there’s a ranking for Godzilla and a ranking for Kong. They 
are not statistically independent of one another because the ranking of 
one affects the probability of rankings for the other. For example, if one 
of the monsters ranks #1 on a list, the other cannot also be ranked #1 
(unless ties are allowed, which never happened in the lists I sampled).

When data are paired in this way, we can compare them by taking 
the difference between the pairs and performing a hypothesis test for 
the mean on the result. When the population variance is unknown, this 
type of test is called a paired t-test. This is a little different from a 
generic t-test where the two samples are independent of one another. 
Both tests rely on a t-statistic and both use Student’s t-distribution to 
calculate the critical value, but a little extra work is needed when cal-
culating the sample variance for the generic t-test. For the details on 
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the t-test for independent samples, I refer you to one of the texts listed 
at the end of this book.

To perform a paired t-test, I’ll redefine my data values to be dG−KK, 
the difference between Godzilla’s ranking and King Kong’s ranking on 
the same list. If the difference is negative, Godzilla ranks higher on the 
list than Kong. If it’s positive, the reverse is true. I’ll construct a test 
for the mean difference between the monster’s rankings, in other words, 
for the following two hypotheses:

H0: μG−KK = 0 vs.

HA: μG−KK ≠ 0.

If the null hypothesis, H0, is true, then there is no real difference 
in the rankings between the two monsters, and the battle is a tie. If HA 
is true, then one of the monsters ranks, on average, higher than the other 
and we have a winner.

Before I run the hypothesis test, there’s one important glitch in the 
data to deal with. Thirty-six percent of the lists in my sample ranked 
one of the monsters in the top ten and not the other. This means one of 
the monsters ranked lower than ten, but there’s no way of knowing how 
much lower. When observation values are hidden in this way, they are 
censored. There are different ways of dealing with censored data. For 
example, I could ignore all of the lists where only one of the monsters 
appears. But this feels like cheating. The fact that one monster didn’t 
appear in the top ten is useful information and should, if possible, be 
taken into account. So I’ll use another common method for handling 
censored data, I’ll set the value of those censored rankings as close as 
possible to the cut-off value of ten. In other words, whenever Godzilla 
or King Kong doesn’t appear on somebody’s top ten list, I’ll set his 
ranking to 11.

Figure 7.5 plots the frequency distribution for the difference 
between Godzilla’s rank and King Kong’s rank. These differences are 
not continuous, and they’re definitely not bell-shaped. Because there 
were no ties in the rankings, there are positive differences and negative 
differences, but no zero values. The differences are cut off at −10 and 
10 because of the way in which I substituted 11 for every censored 
value. Fortunately, I have well over 25 values in my dataset and I have 
the central limit theorem. This life-saving property suggests that no 
matter how beastly the original data are, the sample mean tends to look 
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approximately normal for large sample sizes. So I can feel comfortable 
about using the test despite the decidedly non-normal looking data 
shown in Figure 7.5.

The sample mean of the differences is x = −0 71. . This means, on 
average, Godzilla’s ranking tends to be just slightly lower than Kong’s, 
giving the lizard the edge in the competition. Is this enough of a dif-
ference to claim statistical significance? A paired t-test will tell us. The 
sample standard deviation is s = 5.28. The number of observations in 
the sample is N = 57, so the test statistic is

T N
x

s
= − = − − = −µ0 57

0 71 0

5 28
1 0

.

.
. .

The alternate hypothesis states μG−KK ≠ 0, and so a two-tailed criti-
cal value applies here. From Appendix B, the two-tailed critical value 
for the t-distribution with α = 0.05, and N − 1 = 56 degrees of freedom 
is tcrit = 2.0. The test statistic T = −1.0 is between −tcrit and tcrit, not large 
or small enough to reject the null hypothesis, and so I accept the claim 
that the mean difference is zero. In other words, I’m forced to stick 
with the hypothesis that the popularity of the two monsters is the same.

Figure 7.5.  Frequency distribution for Godzilla’s rank minus Kong’s rank.
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Tests for a Proportion

A tie. How utterly boring. I’m determined to find a winner, regardless 
of who it might be. As I look back at the frequency distributions in 
Figure 7.1 and add up the top three bins, I notice that Godzilla ranks 
in the top spot 25% of the time while Kong takes first place 16% of 
the time. That Godzilla takes first place more often than Kong might 
be an indication he’s the more popular monster. In the last section, I 
compared the rankings directly to see if the means were significantly 
different. Maybe I can get more information by looking at the propor-
tion of lists where Godzilla ranks above King Kong. If both monsters 
are equally popular, then the lizard will beat the ape about half the time. 
This means the probability Godzilla outranks Kong will be pG = 0.5. 
This leads me to set up the following hypotheses:

H0: pG = 0.5 vs.

HA: pG > 0.5.

Just like the confidence interval for a proportion introduced in the last 
chapter, this test relies on the binomial approximation to the normal 
distribution. In other words, as long as Np̂ ≥ 5 and N(1 − p̂) ≥ 5,

Z
N p p

N p p
= −

−
ˆ

ˆ( ˆ )
G

1

approximately follows the standard normal distribution. With pG = 0.5 
and N =  57, both of these conditions hold, and so the z-statistic can 
be used as a test statistic for this test. Since the alternate hypothesis  
is pG >  0.5, a one-tailed critical value applies here, and the decision 
threshold can be retrieved from the table in Appendix A.

In my sample, Godzilla beats King Kong 56% of the time; this 
means ˆ .pG = 0 56. With N = 57 samples, this gives a test statistic of

Z
p p

p p

N

= −
−

= −
( )

=
ˆ

( )

( . ) .

. ( . )
. .G G

G G1

0 56 0 5

0 5 0 5
57

0 93

From Appendix A, the one-tailed critical value for the standard normal 
distribution with α = 0.05 is zcrit = 1.65. Because the test statistic Z is 
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less that zcrit, I must, once again, accept the null hypothesis that the 
monsters are equal.

AND THE WINNER IS  .  .  .

Sometimes a study doesn’t support our preconceived notions or prove 
our point. This is one of those times. I wanted King Kong to win. I 
thought Godzilla was going to win. In the end, neither monster came out 
on top. After analyzing the monster ranking with three of the hypothesis 
tests summarized in Figure 7.6, I’m forced to draw the unsatisfying 
conclusion that both monsters are equally popular among movie fans. 
It’s possible, with a larger sample size, that the variation of the test sta-
tistics could be decreased enough for one of these creatures to win. It’s 

Figure 7.6.  Common hypothesis tests for common situations.

Type of test  H0 HA Test statistic  Reject H0 

when:  

Where to find 

the critical 

value 

Mean, 

known 

variance 

m = m0

m = m0

m>m0

m<m0

m≠m0

  

m>m0

m<m0

m≠m0

 

Z>zcrit 

Z<–zcrit

Z>zcrit or Z<–zcrit 

Appendix A 

Mean, 

unknown 

variance 

T>tcrit  

T<–tcrit 

T>tcrit or T<–tcrit  

Appendix B 

Proportion

Chi-squared

(goodness-

of-fit)

 p = p0 p>p0

p<p0

p≠p0

Z>zcrit 

Z<–zcrit 

Z>zcrit or Z<–zcrit 

Appendix A 

p1 = q1,

p2 = q2,

 

etc.  

At least 

one 

pk≠qk

c2>xcrit Appendix C 

Z = N
c — m0
–

s

T = N
c — m0
–

S

Z = 
Np(1 – p)

Np – pˆ

ˆ ˆ

c2  = +

+

(O1 – E1)2

(OM – EM)2

E1

EM

…

…



128  Chapter 7  Godzilla versus King Kong

also possible that there is no consensus among movie fans and so no 
amount of top ten lists would ever result in a statistically significant dif-
ference. If you’re so inclined, I urge you to gather twice as many top ten 
lists and repeat this analysis to see if the lizard or the ape wins. If you 
do declare a winner, let the world know. Until then, the battle of the 
movie monsters rages on.
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I have a confession to make. I’m a bit of a mad scientist.
I was the kid with the 1001 Electronics Kit and the Early Learners 

Chemistry Set and the Little Critters Biology Lab. Only I never did the 
experiments in the books that came with those kits. No, I had my own 
set of experiments to run, my own list of questions to answer. Like 
whether or not my little brother could feel an electrical current passed 
through the doorknob on the door to his bedroom (he could). I was the 
girl in high school who helped the chemistry teacher prepare mixtures 
for classroom demonstrations. But it wasn’t mixing solutions and 
weighing chemicals that interested me. I wanted answers to questions 
that didn’t appear in my textbook. Like whether or not silver nitrate 
really does turn your best friend’s feet black (it does). I was the chem-
istry student in college whose labs never worked out because I was too 
busy testing other hypotheses. Like the TA’s claim that a six-inch 
Bunsen Burner can’t create a flame high enough to reach the ceiling 
(actually, given the right motivation, it can).
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Being a mad scientist has many benefits. You never have to worry 
about a bad hair day. The badder, the better. You can test any theory 
without worrying about those annoying details that bother other people, 
details like ethics and other people’s feelings. And if you’re lucky 
enough to live with family members or roommates, you have an endless 
supply of test subjects at your disposal. All you need is a hypothesis, 
a controlled experiment, and a data analysis plan and all your nagging 
questions can be answered.

Nowhere is mad science more evident, or more socially acceptable, 
than a middle school science fair. Pliable young minds grow mold in 
their refrigerator, subject their siblings to any manner of tests, and feed 
their pets strange foods just to answer some question that popped into 
their heads. And creativity is encouraged. Projects are supposed to  
be scored on the merit of the work and not on the student’s hypothesis. 
So it shouldn’t matter that Dillon contaminated the entire contents of 
his mother’s pantry with ants. As long as he followed the scientific 
method and came to a valid conclusion, his project is just as good as 
any other.

But is it, really?
The judges are scientists, and as such, have been trained to be 

objective. But judges are also people, complete with their own imper-
fections and personal biases. Does Professor Bennett let her own fear 
of insects cloud her view of Dillon’s brilliant hypothesis? Does Dr. 
Lincoln look beyond the ant infestation and into the teenager’s insight-
ful conclusions? In this chapter, the scientists become the lab rats as I 
ask the question, “Are science fair judges really fair?”

ANALYSIS OF VARIANCE: THE SCIENTIST’S 
TOOLKIT

The scientific method is the foundation of modern research. It’s how 
we prove a theory. It’s how we demonstrate cause and effect. It’s how 
we discover, innovate, and invent.

There are five basic steps to the scientific method:

1.  Ask a question.

2.	Conduct background research.

3.	Come up with a hypothesis.
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4.	Test the hypothesis with data.

5.	Revise and retest the hypothesis until a conclusion can be made.

The majority of this book is devoted to step four, collecting and 
analyzing data to prove or disprove your hypothesis. In this chapter, 
however, I’d like to focus a little attention on the entire process. Suppose 
I’ve just developed a new, genetically engineered chili pepper. This 
pepper, the Nine-Levels-of-Hell pepper, is so hot it could, quite liter-
ally, set your tongue on fire. As a mad scientist, I’m not happy with the 
notion that it’s the hottest chili ever produced. I need to prove it. So, I 
set down the path of the scientific method, trying to answer the ques-
tion, “Is the Nine-Levels-of-Hell pepper the hottest chili pepper known 
to man?”

I start with some background research. As it turns out, there are 
two methods people use to determine the heat of a chili pepper (Bosland 
2010). The first method involves careful measurements using a sophis-
ticated laboratory instrument called a high-performance liquid chro-
matograph, or an HPLC. I don’t keep one of those in my kitchen, so I 
immediately turn to the second. This method involves human taste 
testers and something called the Scoville scale. Dried chili peppers are 
ground up and dissolved in sugar water like some sort of tongue-
numbing cocktail. The cocktail is diluted little by little until the tasters 
claim they can’t taste the heat anymore. The amount of dilution needed 
to completely wash out the burn is the heat of the chili pepper in Sco-
ville units. A typical green bell pepper is 0 units. A jalapeno pepper is 
about 4,000 units. A habanero pepper is around 250,000 Scoville units. 
And the world record holder, the Indian ghost chili pepper, is around 
1,000,000 Scoville units (The Scoville Heat Measurement Chart 2012).

All of these peppers are wimps compared to my Nine-Levels- 
of-Hell chili pepper. At least, that’s my hypothesis. And to test it, I  
can follow the experimental design and planning process outlined in 
Chapter 2.

The effect in this experiment will be the heat of different chili 
peppers as measured by the Scoville scale. Since there’s a standard 
procedure for mixing and tasting the Scoville cocktails, all the variables 
related to preparing the drinks have already been systematically set for 
me. Even so, there are a number of variables that need to be decided 
upon. First, I need to pick test subjects, people who are willing to taste 
each of the chili pepper cocktails and give me feedback. A group of 
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people who start to sweat while eating pepperoni will have a different 
threshold for heat than people who eat jalapenos by the fistful. This 
variable, spice tolerance, could definitely have an impact on my results. 
To keep this uncontrollable factor from becoming a confounding factor, 
it’s important for me to solicit test subjects at random, and gather 
information from each volunteer about his or her spice tolerance.

There are several controllable factors that need to be set. The types 
of chili peppers I choose to include in the experiment, who tastes which 
chili peppers, the order in which the different peppers will be tested, 
all these are controllable factors. As for the chili peppers to include, 
I’ll pick two of the most infamous competitors out there, the ghost chili 
pepper and my personal nemesis, the habanero. I’ll test these two along 
with my Nine-Levels-of-Hell pepper and compare all three.

There are two ways to decide who tastes which chili peppers. One 
would be to have all my test subjects taste all three chili peppers. This 
would produce a set of paired samples, where the feedback of each test 
subject is paired across all three groups. There are two problems with 
this approach. First, except for the paired t-test from last chapter, most 
basic statistical analysis methods assume independent groups and not 
paired samples. Having feedback from the same individuals in each 
group makes the samples dependent on one another, and unless I’m 
willing to apply a not-so-basic statistical analysis technique to deal with 
this dependency, it’s better to avoid this situation altogether. Second, 
experience has shown that most people only agree to be my test subject 
once. After tasting their first Scoville cocktail, it’s quite likely my test 
subjects will leave, never to speak to me again. So, rather than having 
a small number of test subjects, each tasting every chili pepper, I’ll 
gather more test subjects and have each person taste only one. This will 
give me three independent groups to work with. But in order to keep 
bias from creeping into my data, I’ll assign each test subject to one of 
the chili pepper groups at random.

All that remains is to formulate a plan for analyzing the data. There 
are three chili peppers in the experiment, and so there will be three 
groups to compare to one another. Because there are more than two 
groups, a simple hypothesis test isn’t enough. Analysis of variance is 
the tool for the job. Analysis of variance, or ANOVA, is just a fancy 
term for a hypothesis test that compares the mean of multiple groups. 
Like the hypothesis tests described in the last chapter, ANOVA begins 
with a null hypothesis and ends with the comparison of a test statistic 
(or p-value) to a decision threshold (or error probability α). However, 
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it’s specifically designed to compare the means of more than two groups 
at once.

The t-test and ANOVA are both hypothesis tests for equality of the 
mean of different groups. If there are two groups, then a t-test should 
be used. If there are three or more, then ANOVA is the tool of choice.

Suppose I have samples from three different populations, and these 
three populations have means μ1, μ2, and μ3. To test for sameness of 
all three, the null hypothesis looks like

H0: μ1 = μ2 = μ3.

There are plenty of tests for comparing the means of two populations. 
And if you were willing to compare all possible pairwise combinations, 
1 versus 2, 1 versus 3, and 2 versus 3, you could use a t-test to compare 
these three groups to one another. This is called a multiple comparison 
procedure. Multiple comparison procedures can be helpful in determin-
ing which groups are different from others, and it’s a great tool for 
analyzing many groups in detail. But the process is cumbersome and 
the error probabilities can be tricky; the more groups you have, the 
worse it gets. For example, with four groups, there are six combinations 
of two groups to take into account. With five groups, there are ten. With 
ten groups, there are 45.

ANOVA offers a simple and powerful alternative to this all pair-
wise comparison approach. ANOVA doesn’t look at group means two-
by-two, rather it tests for sameness of all group means at once. It does 
this indirectly, by looking at variation, relying on a common hypothesis 
test for comparing the variance of two populations. This test is called 
the F-test, and I’ll introduce it before moving on to the ANOVA procedure.

Suppose you have two groups and you’d like to know if the vari-
ance of those two groups is the same. You could set up the following 
hypotheses:

H0: σ σ1
2

2
2=  vs.

H0: σ σ1
2

2
2> .

Like all the hypothesis tests in the previous chapter, the test statistic 
relies on a key result about a sample distribution. Here’s the result:

Probability distribution for the F-statistic: For two groups with 
the same population variance, sample variance s1

2 and s2
2, and 

number of samples N1 and N2, the F-statistic, F s s= 1
2

2
2, follows 
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the F-distribution with N1 − 1 degrees of freedom in the numer-
ator and N2 − 1 degrees of freedom in the denominator.

The F-distribution is plotted in Figure 8.1 for N1 = N2 = 10. Like 
the chi-squared distribution from the last chapter, this distribution is 
decidedly non-normal. Because the variance is always positive, the 
values for the F-distribution are always positive as well. It’s right-
skewed. The mean is always one, and the variance depends on the 
degrees of freedom in the numerator and the denominator.

The F-statistic is the test statistic for the F-test, and so the one-tailed 
decision threshold Fcrit for this test can be calculated using critical 
values from the F-distribution. If F  ≤  Fcrit, then you accept the null 
hypothesis that the group variances are the same. If F > Fcrit, then you 
reject the null hypothesis and conclude that they are different.

I haven’t provided a table of critical values for the F-distribution 
because as you’ll see later in this chapter, the ANOVA procedures avail-
able in most data analysis software packages provide this for you. 
However, if you’re so inclined, critical values for the F-distribution can 
be calculated in Excel using the FINV function.

To compare the variance of two groups with an F-test, you label 
the group with the larger sample variance as group one, calculate the 

Figure 8.1.  The F-distribution.
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F-statistic, and compare it to the decision threshold. For example, 
suppose I have two groups, each with N1 = N2 = 25 samples in them. 
The sample variances are s1

2 19 4= .  and s2
2 16 2= . . (Note that I set it up 

so group one has the larger variance.) The F-statistic is F = 19.4/16.2 = 
1.19. From Excel, the α = 0.05 critical value for the F-distribution with 
N1 −  1 =  24 degrees of freedom in the numerator and N2 −  1 =  24 
degrees of freedom in the denominator is Fcrit = 1.98. Because F < Fcrit, 
I accept the null hypothesis that the variances of the two groups are the 
same.

So, what does an F-test have to do with ANOVA? How can a test 
for sameness of variance be used to compare three or more means? 
When you compare two or more groups, there are different sources of 
variation in the data. First, there’s the variation of observations within 
each group. This type of variation, called the within-group variation, is 
typically measured with the sample standard deviation. There’s also 
variation between the different groups. This between-group variation 
comes not from the spread of observations within a data cloud, but from 
differences between the central location of the different clouds. The 
between-group variation is typically measured using the standard devi-
ation of the group averages. These different sources of variation are 
illustrated for three groups in Figure 8.2. Note the brackets showing 
within- and between-group variation are meant to illustrate the concept 
of variation and not the standard deviation, because standard deviation 
measures the average deviation around the sample mean and not the 
total spread of observations as suggested in the figure.

The ANOVA procedure tests for equality of group means by per-
forming an F-test that compares between-group variance (the numera-
tor) to the typical within-group variance (the denominator). If the 
between-group variance is significantly larger than the typical within-
group variance, the group means vary more than would be expected by 
random chance alone. In this case, the null hypothesis that the group 
means are equal is rejected. Otherwise, the null hypothesis is accepted.

The calculations for the ANOVA test are detailed and a little messy, 
so I’ll leave them to the references listed at the end of this book. For-
tunately, you don’t need to know all the detailed calculations to run 
ANOVA. This procedure is available in most basic spreadsheet pro-
grams such as Microsoft Excel. All you need is your data, organized 
into groups, a desired significance level α, and a basic understanding 
of the assumptions that go into such an analysis.
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ANOVA assumptions:

1.	 The samples approximately follow a normal distribution.

2.	None of the sample standard deviations is dramatically different 
from the others.

3.	The samples are independent of one another, in other words, not 
collected in groups.

ANOVA results are typically displayed in a table format. For 
example, suppose I run the chili pepper comparison experiment and get 
three groups of Scoville measurements, one for each pepper. A typical 
ANOVA procedure performed on these data might look like the results 
presented in Figure 8.3. The first table provides a routine summary of 
each group, including the number of observations, the sample mean, 
and sample variance. The second table summarizes the results of the 
F-test. This table reports intermediate values that go into the calculation 
of the F-statistic, things like the total sum of squared deviation, degrees 
of freedom, and average squared deviation (the total sum of squared 
divided by the degrees of freedom). The most important values are 
reported in the last three columns. The F-statistic is reported in the 
fourth column. This is the ratio of the between-group to within-group 
variances. The p-value of this F-statistic is reported in the fifth column. 
The decision threshold for the test is listed in the last column.

Figure 8.2.  Within-group variation versus between-group variation.
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For this example, the F-statistic is F = 44.9, and the critical value 
for the test is Fcrit = 3.13. Since F > Fcrit, then the null hypothesis that 
all three chili peppers are equal is rejected. The second to last column, 
the p-value, reports just how unlikely this value F is under the null 
hypothesis. Specifically, if the group means are the same, the probabil-
ity the F-statistic would have been bigger than 44.9 is the p-value, the 
exceedingly small probability of 3 × 10−13. In other words, the probabil-
ity F ≥ 44.9 purely by chance is so small, the null hypothesis should 
be rejected.

The three chili peppers aren’t the same. The ANOVA results tell us 
at least one of them is different from the others. But which one is it? 
While it’s possible to look at the different group means and speculate, 
ANOVA doesn’t provide a definitive answer to this question. That’s 
what a multiple comparison procedure does. By comparing groups 
two-by-two, this procedure allows you to rank the groups from largest 
to smallest, identifying which groups have the same means and which 
are significantly different. But this is a subject for another day, and so 
the details of the multiple comparison procedure are left to the texts 
listed at the end of this book.

Figure 8.3.  Sample output of ANOVA for the chili pepper comparison.

Data summary

Group
Ghost chili
Habanero

Nine-Levels-
of-Hell

Number of 
observations

24
24

24

Average 
Scoville units 

(x100,000)
91.25
56.29

114.88

Variance
301.76
386.82

450.64

ANOVA

F-statistic

44.88

P-value

3.27E-13

F crit

3.1

Mean 
squared 

deviation 
(MS)

17043.6

379.74

Source of 
Variation

Between 
Groups

Within Groups

Total

Sum of 
squared 

deviation (SS)

34087.19

26202.08

60289.28

Degrees of 
freedom (df)

2

69

71
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LET THE JUDGES BE JUDGED

There are science fairs and there are Science Fairs. The Intel Interna-
tional Science and Engineering Fair, for example, is a Science Fair. In 
this competition, high schoolers cure cancer in order to win up to 
$100,000 in cash and scholarships. Science Fairs showcase the world’s 
future Nobel prize winners. Science Fairs are poster children for the 
responsible and ethical practice of the scientific method.

I have no interest in Science Fairs.
I’m more interested in a science fair, a local middle school contest 

where kids practice mad science, the kind that makes them feed energy 
drinks to plants just to see if BuzzRush is good for you, the kind that 
gets them to listen to their music player for 85 hours straight just to see 
how long batteries last. That’s the science fair I’m interested in.

After a little searching, I found a local middle school willing to 
give me scores from their 2012 science fair (and you know who you 
are, thanks for the data). Here’s how the judging went. There were 67 
science projects on display, and 27 test subjects, er, judges to score 
them. Each judge was randomly assigned between seven and nine 
projects, so that each project received scores from at least three judges. 
The projects were scored in four categories, each category on a scale 
from one to five, so the lowest possible score was zero, and the highest 
possible score was twenty.

All the judges were practicing scientists, with areas of expertise 
overwhelmingly focused on physics, chemistry, and biology. The student 
projects covered a much broader range of topics, including behavioral 
science, food science, plant science, materials, and so on. If the judges 
were biased for or against certain categories of projects, that bias should 
be reflected in the final scores. Therefore, the experimental plan was this: 
to group the projects by category and compare the scores across different 
groups, looking for differences that suggest the judges are less than fair.

This strategy is not without its problems. All project categories are 
not created equal. Some tend to be more scientifically demanding than 
others. Engineering, for example, is a difficult subject. And while it 
might appeal to the young Albert Einstein out there, the kid who’s been 
building a mini nuclear reactor in his own back yard, it probably doesn’t 
appeal to the kid who pays his lab partner to do the experiments while 
he sits in the back of the room doodling. If this is indeed the case, then 
the scores in the engineering category might tend to be higher than 
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others, not because of any bias on the part of judges, but because the 
more scientifically-skilled students tend to prefer it.

This variable, the relative difficulty of different categories, has the 
potential to become a confounding factor. In other words, if I ignore it, 
this factor could make the conclusions of this experiment ambiguous. 
As discussed in Chapter 2, there are several ways to eliminate the impact 
of confounding factors. One is randomization and another is blocking. 
Randomization could be used to remove this potential problem, but the 
school frowned upon letting me choose project topics for the kids 
(something about encouraging the kid’s curiosity and creativity). So, I 
had to settle for blocking.

Blocking is the process of organizing the data into blocks that  
are homogeneous with respect to a potentially confounding factor. The 
school was willing to give me the classroom grades for each project, 
these grades being assigned by the teacher. The teacher scored the 
projects on the scientific method as learned in class, providing an inde-
pendent assessment of each project. In other words, these grades set 
the standard for what makes a good and bad project. In this study, I 
included only those projects that received an A or B, in other words, 
only the best projects.

I categorized the projects along the lines of the Intel International 
Science Fair guidelines with the addition of one: food science. This 
category includes a variety of studies comparing the taste or texture of 
differently processed foods. The frequency distribution of the project 
categories is provided in Figure 8.4. The two most common categories 
are physics and food science. Each of these categories contained 11 
projects. The least popular category was health science, with only a 
single entry.

All projects were scored on a scale from 0 to 20, and Figure 8.5 
shows the average scores for each category, along with the total variation 
as calculated by the range (see Chapter 2 for details). The average, or 
sample mean, is plotted as a diamond, and the range is illustrated by the 
vertical line. The data clouds are plotted simply to illustrate the total 
within-group variation. To the right, the between-group variation is 
plotted. The grand mean, the average of all the group means, is plotted 
as a diamond and the range of group means is shown with the vertical 
line.

According to the figure, the sample mean of most groups falls 
between 14 and 16. The within-group variation, the span of the  
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Figure 8.4.  The frequency distribution of science fair projects.

Figure 8.5.  The sample mean and total variation of science fair scores.
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individual data clouds, easily covers the span of group means, from the 
lowest scoring chemistry category, to the highest scoring engineering 
category. In other words, it looks like all the group averages are con-
sistent with one another within the observed variation. However, this 
figure is merely a visual aid. It doesn’t provide for any rigorous analysis 
nor does it use the recommended measure of variation, the variance. 
Let’s see what ANOVA says.

The ANOVA procedure assumes each of the groups follows a 
normal distribution, but it’s pretty forgiving and so many researchers 
ignore the assumption and use this procedure anyway. But it’s impor-
tant to note that in such cases, the probability of making a wrong 
conclusion might be larger than the α  = 0.05 significance level speci-
fied by the test. It might be off by just a few percent, or it might be off 
by a factor of ten. It all depends on how non-normal your data are. As 
a general rule, when the assumptions of ANOVA (or any hypothesis 
test) are violated, it’s okay to run the test anyway, but it’s a good idea 
to check your conclusions by looking at a graph such as the one pro-
vided in Figure 8.5.

Figure 8.6 shows the results of the ANOVA procedure performed 
on the science fair data. The last three columns contain the most impor-
tant results. The F-statistic is 1.50 and the critical value is Fcrit = 2.06. 
The p-value is 0.17, over three times larger than the significance level 
α = 0.05. Since the p-value is so large and F < Fcrit, I must accept the 
null hypothesis that the mean scores are the same across categories. 
These results are consistent with my suspicions from Figure 8.5. It 
looks like science fair judges really are fair, after all.

UNLEASHING YOUR INNER MAD SCIENTIST

These results should be a comfort to all those mad scientists in train
ing out there. They’re definitely a comfort to me. It apparently doesn’t 

Figure 8.6.  ANOVA analysis of science fair scores.

SS df MS  F P-value F crit 

Between Groups 83.07834 7  11.86833  1.502161 0.16894 2.059914

 1445.854 183  7.900839  

Total  1528.932 190

Within Groups

Source of Variation
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matter what type of science you prefer, whether it’s physics, food 
chemistry, or psychology. Nor does it seem to matter if your motives 
are misunderstood and your creativity underappreciated. Your project 
will be judged on its scientific merit. And even if you never win thou-
sands of dollars or make it to an internationally recognized competition, 
you still have the satisfaction of knowing that with a good experimental 
design and the right statistical tools, channeling your inner mad scien-
tist is as easy as finding a few willing family members and friends.
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One of the great things about the Internet is its ability to spread news 
at the speed of light. Earthquakes, tsunamis, and hurricanes are watched 
while they happen. Politicians’ criminal activities are posted the moment 
the money changes hands. Celebrity divorces are reported in the tab-
loids, even, it seems, before the stars are aware they’re unhappy. This 
rabid information flow doesn’t stop with the truth, either. It also applies 
to tales of a more dubious origin.

Snopes.com is a website devoted to tracking and debunking urban 
myths. Here you’ll find strange but true stories, like the molasses flood 
of 1919 that killed dozens of Bostonians. You’ll learn about current 
scams, like the famous Nigerian Bank scam, the one where you get an 
email from somebody claiming to be a rich foreigner who desperately 
needs to transfer his money into your bank account so his government 
doesn’t take it all. You’ll also see completely false reports, urban 
legends, like the one about the organ-stealing con men who take your 
kidneys and sell them on the black market. As far as questionable 
reports go, if you’ve heard of it, this website probably has it.

When the Zombie Flu 
Went Viral: Regressing the 
Myth Out of Urban Myths
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The zombie flu is just such a report. According to the website, this 
strange virus first appeared in April 2005, when a fake but official-
looking BBC news article announced a new parasite had appeared in 
Cambodia. Carried by mosquitoes, this deadly parasite reportedly killed 
its victim, and then restarted the heart for up to two hours after death, 
causing the unfortunate person to behave like a zombie on the rampage. 
It was cleverly crafted, including everything from statistics on the 
mortality rate to official reactions from both Cambodia and the United 
States.

The report sat on the Internet, infecting the imaginations of a few 
diehard zombie fans, but it wasn’t until four years later when the 
disease went viral. On April Fool’s Day 2009, the report was revived, 
reworked, and recirculated. Now a mutation of the H1N1 virus, the 
zombie flu was reportedly spreading through London, with suspected 
cases in other European cities. The rumor spread like a pandemic. News 
of the strange disease was sent out on Twitter. Bloggers began writing 
about the virus and its role in the upcoming Zombie Apocalypse. News-
groups filled up with questions from concerned people asking if the 
zombie flu was real and how they could prepare for it.

According to the website techcrunch.com, the rampant spread of 
zombie swine flu was sparked by the Twitter community. Labeled as 
an authentic BBC news story and allowed to be retweeted under the 
same heading, Twitter followers around the world were among the first 
to hear about the disease. Was this the trigger, the event that sparked 
the rumor pandemic? In this chapter, I’ll use basic regression to track 
reports of this grisly condition, showing how a nugget of truth can 
explode into an urban legend, answering the question “When did the 
zombie flu go viral?”

LINEAR REGRESSION AND OTHER ZOMBIE  
TRACKING TOOLS

When you’re tracking trends, regression is the tool of choice. Regres-
sion is a procedure for describing one variable, y, as a function of 
another variable, x. The variables can be anything as long as there’s 
good reason to assume y depends on x. For example, the total number 
of human brains a zombie has eaten over time might be turned into a 
regression function, with the number of brains being the y-variable and 
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time being the x-variable. The number of brains eaten depends on how 
long the zombie has been on the rampage and so y is a function of x, 
where y = f(x).

The function relating y to x can also be almost anything—a line, a 
quadratic function, even a logarithmic function. Depending on the form 
of this function, whether linear or nonlinear, the regression process 
ranges from simple to highly sophisticated. The most basic regression 
procedure, linear regression, assumes x and y are related to one another 
with a line, y = mx + b. This is the easiest type of regression to perform, 
and the one I’ll illustrate throughout this chapter.

Basic linear regression takes a set of paired observations, call them 
x and y, and fits the line y = mx + b. In other words, it uses the data to 
estimate the slope of the line, m, and the y-intercept, b. Because samples 
and not entire populations are generally used to get these estimates, 
there’s uncertainty associated with them. So, an important part of the 
regression process is evaluating the uncertainty in these estimates and 
determining what’s called the prediction error, the variation inherent 
in the y-value as predicted by the regression line. Linear regression 
procedures available in most basic data analysis packages provide not 
only estimates of m and b, but also a number of useful diagnostic sta-
tistics as well. And as you’ll see throughout the rest of this chapter, 
these diagnostics often turn out to be just as important as the estimated 
parameters.

INTERNET POSTS AND OTHER SYMPTOMS  
OF DISEASE

When a story, blog, or video goes viral on the Internet, it becomes 
extremely popular in a very short period of time. Popularity can be 
measured in several ways, such as the number of hits a website receives, 
how fast a particular item is being shared, or how often the topic is 
being discussed. The zombie flu has been around since 2005, and it 
was already a regular topic of discussion long before zombies became 
the rage in 2009. If the fake BBC article was the trigger that made the 
zombie flu go viral, then there should be a dramatic difference between 
the amount of related posts before and after April Fool’s Day 2009.

To look at this, I decided to track Internet activity on the zombie  
flu during the first half of 2009. Google allows users to search within 
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a range of posting dates, and so a search on the term “zombie flu  
outbreak” for the first half of 2009 would provide me with a good 
sample of postings on the topic during the months in question. My plan 
was to grab the dates of each posting and look at the number over time. 
Before going viral, this number should increase at a nice, steady pace. 
After going viral, the rate of new postings should really take off.

WHEN THE ZOMBIE FLU WENT VIRAL

Did you know Google watches you when you’re web searching? Sure, 
I’d heard this was true, but I didn’t really believe it until I starting col-
lecting search results on the zombie flu. See, I bought a web ripper. It’s 
a piece of software that allows you to automatically extract selected 
bits of information from any website. After only one tutorial and a 
couple hours, I had a basic working knowledge of the software. I must 
admit, it gave me a sense of power, knowing I could extract all sorts 
of information from any website. And I didn’t even need to be sitting 
at my computer to do it. I could set up the program to automatically 
scroll through pages of search results, grabbing any information I 
wanted. All it took was a little money and a little willingness to learn 
some new software.

After searching “zombie flu outbreak” postings between January 1 
and May 1, 2009, I set up my web ripper to automatically scan through 
hundreds of pages of search results, pulling out the link, the summary 
information, and the posting date of every single hit. Naturally, the soft-
ware did this much faster than I could have myself. It would have taken 
me days, but the program could do it in just a few minutes.

Apparently my web ripper was so fast it sent up some red flags in 
the Google software. Out of nowhere, my program halted as the search 
engine diverted me to a new web page, announcing it was concerned 
about the high level of activity I was generating. To continue, the web 
page said, I’d need to type in a CAPTCHA, a nonsense word written 
in squiggly letters meant to prevent people like me from releasing 
viruses and scams on the Internet. I followed the instructions, typing 
in the phrase, but it only asked me to enter another one. I typed the 
next nonsense word and it asked for another. It went on like this for a 
few minutes until I finally gave up. I turned off the software and went 
for a cup of coffee.
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I came back a little while later to continue my web ripping and was 
delighted to find it working once again. I started the program, sat back, 
and relaxed. But after just a few minutes, Google stopped me a second 
time. Like before, I was redirected, lectured, and asked to play the 
enter-the-CAPTCHA-phrase game once more. This time, I didn’t 
bother. I exited the software and went for another cup of coffee. It went 
on like this for the better part of a day, me grabbing a couple dozen 
pages of results and Google eventually stopping me. I’m sure the 
company was only doing this to protect itself from computer viruses 
and such, but after four tries and just as many lattes, the paranoia center 
of my brain launched into overdrive. If it’s so easy for me to grab loads 
of information from the Internet, it’s just as easy for other people to do 
the same. Who’s out there searching me and what are they learning? 
And if Google has been watching every web search I’ve done, how 
much do they really know about me?

Fortunately, my anxiety was short-lived. Maybe it was the caffeine 
leaving my system or maybe the realization that a sensible person 
would focus their information-gathering efforts on rich celebrities and 
not an obscure statistician. In any case, my mind finally settled down, 
and I stopped asking questions and prepared to answer one. I finished 
grabbing the posting dates of all zombie flu-related hits that occurred 
between January 1 and May 1, 2009. My search definitely wasn’t all-
inclusive. I only searched Google and only looked for the term “Zombie 
Flu Outbreak,” leaving out Twitter feeds and other social media as well 
as related terms. On the other hand, the Internet’s largest search engine 
reaches far and wide, and these hits provide me with a good sample of 
data with which to work.

There’s a little-known secret that professors like to keep under 
wraps and professional statisticians will only admit under duress. For 
a typical basic statistical analysis, a well-chosen plot does most of the 
work for you. Don’t get me wrong, it’s important to plug in the numbers, 
work the calculations, and look at the official results. But rarely does 
a formal analysis disagree with the intuition that comes from visual-
izing your data in the right way. This is why I love graphs.

When you’re looking for mathematical relationships between  
two variables, a scatterplot works wonders. A scatterplot is a plot of 
two variables against one another, y versus x, and it’s a great way to 
visualize relationships, get a sense for variation, and check for outliers. 
Figure 9.1 shows a scatterplot of zombie flu-related postings during the 



148  Chapter 9  When the Zombie Flu Went Viral

first two months of 2009, tallied by week. The x-axis plots days since 
January 1, and the y-axis plots the total number of postings in that time. 
These data provide me with a baseline, an indication of the zombie 
flu-related web chatter during January and February, before the topic 
went viral. The points on the scatter plot follow a clear pattern, with 
the value of y dependent on the value of x. If you imagine a line from 
the points in the lower right-hand corner to the upper-left, it looks as 
if most of the values would sit on the line or very close to it. These 
data clearly call for linear regression.

In linear regression, a dependent variable, y, and an independent 
variable, x, are related to one another with the function y = mx + b. The 
purpose of linear regression is to take a sample and estimate the slope, 
m, and the y-intercept term, b. As usual, the estimates, the values cal-
culated from the data, are specially noted by placing a hat over the 
original (unknown) parameter values, in other words, m̂ and b̂. Basic 
linear regression uses a technique known as least squares fitting to 
estimate the slope and the y-intercept. Least squares fitting finds the 
values m̂ and b̂ that minimize the squared error, or total squared devia-
tion between the model (estimated) y values and the observed y values. 
If y mx bk k
� = +ˆ ˆ represents the regression estimate of yk, the total squared 

error is:

y y y y y yN N1 1
2

2 2
2 2−( ) + −( ) + + −ˆ ˆ ( ˆ )� .

Figure 9.1.  Total number of zombie flu postings since January 1, 2009.
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By making this function as small as possible, the regression procedure 
finds the parameters that, on the whole, make ˆ ˆ ˆy mx b= +  track the 
observed y-values as closely as possible. There are linear regression 
procedures in most basic data analysis software. For my purposes, I 
used the LINEST function in Excel. Figure 9.2 illustrates the results of 
linear regression performed on the zombie flu data for January and 
February 2009.

As indicated in the figure, the estimate ŷ tracks the observed 
y-values closely and at first glance, it looks like the linear regression 
procedure worked well. The estimated slope ˆ .m = 6 2. Since the slope 
of a line measures the incremental change in y-values per unit change 
in x-values, this means there were, on average, about six new zombie 
flu-related posts per day during the first two months of 2009. The esti-
mated intercept was ˆ .b = 0 02. The y-intercept of a line measures the 
y-value at x  =  0. According to the regression line, then, there were 
basically no zombie flu postings between time t = 0 and the beginning 
of the year (which was time t = 0). This makes sense, and it should. 
No statistical analysis should ever contradict what you know to be true. 
If it does, then something’s amiss.

A zero intercept is a common situation, and so many data analysis 
packages give you the option of automatically forcing the y-intercept 
b̂ to be zero. I could have done this at the outset and then the estimated 
value of b̂ would never have been a question. This is purely a matter 
of choice. I typically run the regression both ways, once with an  

Figure 9.2.  Regression analysis of zombie flu postings.



150  Chapter 9  When the Zombie Flu Went Viral

estimated b̂ term and once with it forced to zero, and then compare the 
results. The slope of the two lines should be almost the same, and the 
estimated intercept b̂ should be nearly zero. If they’re not, then either 
(a) your data do not fit a proper line, (b) there are outliers affecting the 
analysis, or (c) there’s an error in your assumptions, your calculations, 
or both. In the case of the zombie flu data, the two slopes are both 6.21, 
and the estimated ˆ .b = 0 02 is so close to zero, it’s not an issue.

Diagnosing the Fit

I now have a model for my data, in other words, a mathematical func-
tion for the number of zombie flu postings over time. But how good is 
it? Does the line pass through every one of the y-values? Is there a large 
error, or difference between the actual y-values and those predicted by 
the function I’ve just created? The plot in Figure 9.2 suggests the line 
is a good fit, and this is encouraging. There are also a number of diag-
nostics, tools for assessing the quality and accuracy of a model, that 
can be used to answer these questions.

R-Squared

Linear regression fits a line through a dataset. Statistically, this proce-
dure measures something called correlation. Two random variables are 
correlated if the outcome of one affects the probability of the outcome 
of the other. For example, think of the zombie flu web postings data 
and pick a day at random. The probability of five or fewer postings up 
to this day depends on the day you choose. If you choose January 1, 
for example, the probability of five or fewer postings would be much 
higher than if you choose February 15. This means the number of days 
since January 1 and the total number of web postings since January 1 
are correlated. (The concept of correlation may remind you of depen-
dent random variables from Chapter 3. These two concepts are very 
similar, but not exactly the same.)

The correlation coefficient is a descriptive statistic that measures 
how highly correlated two variables are. The correlation coefficient is 
a value between −1 and 1. A value of −1 indicates the variables are 
inversely related to one another, and if you increase one, you’ll see a 
decrease in the other. A value of 1 indicates the variables are positively 
related to one another, and if you increase one, you’ll see an increase 
in the other. A value of 0 implies the two variables are uncorrelated, 
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and the value of one does not impact the likely value of the other. For 
example, the correlation between the number of zombie flu postings 
and time is 0.999, suggesting the total number of posting is positively 
correlated with the number of days since January 1, 2009.

The correlation coefficient is one of the most common ways to 
evaluate the quality of a linear regression procedure, so common, in 
fact, it has its own name: R-squared. The R-squared, or R2, value mea-
sures the correlation not between the x and y values but between the y 
and ŷ values. If the regression line fits the data well, then y and ŷ should 
track one another very closely and so R2 should be close to one. If 
the line fits poorly or if excessive variation in y-values muddies the 
relationship between x and y, then R2 will be closer to zero than one. 
Most linear regression programs calculate the R2 as part of procedure. 
For the zombie flu regression in Figure 9.2, R2 = 0.997.

The R2 value is relatively easy to understand and so it’s often the 
only diagnostic value people use to evaluate the quality of a regression 
line. This statistic isn’t without its pitfalls, though. It works great when 
the range of x-values is big and there are no outliers impacting the 
analysis. But it can also be misleading. Figure 9.3 illustrates some dif-
ferent situations and how they impact the R2 value. In Figure 9.3a–c, 
the R2 value does a pretty good job of measuring how well the regres-
sion line fits the data. In Figure 9.3d, the line is a poor fit to the data, 
but a single outlier raises the R2 value, suggesting the regression line 
fits better than it really does. Outliers like this one, on the edge of a 
regression region, are called influential points, because they can dra-
matically impact the quality of a regression fit. And since diagnostics 
like the R2 statistics can also be impacted by influential points, it’s 
important to look at your data and identify potential problems.

F-Test

In addition to the R2 value, most linear regression procedures report the 
results of a hypothesis test for the slope. This test determines whether 
the slope of the regression line is significantly different from zero, 
meaning there really is a trend in the data. The hypotheses for this test 
are as follows:

H0: m = 0

HA: m ≠ 0.
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The hypotheses are similar to those for the t-test, in other words, the 
test for the mean of a population. However, the formula for the slope 
estimate m̂ is such that the test statistic follows an F-distribution and 
not a t-distribution. The details of this test are straightforward but 
messy, and I refer you to the list of references at the back of the book 
for more details. For practical purposes, it’s important to know that 
regression procedures report the results of an F-test for the slope of 
the regression line, and these results can be interpreted just like any 
other hypothesis test. The only real difference is in calculating the 
degrees of freedom. Recall, the F-distribution has two parameters: a 
numerator degrees of freedom and a denominator degrees of freedom. 
For simple linear regression with a slope and an intercept, there are 

Figure 9.3.  The influence of y-values on R-squared.
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two estimated parameters. The numerator degrees of freedom is the 
number of estimated parameters minus one, which is always one for 
simple linear regression. The denominator degrees of freedom is the 
number of observations in the sample minus the number of estimated 
parameters, or N −  2 for simple linear regression. These parameters 
can be used along with critical values for the F-distribution to deter-
mine the outcome of the test. For example, the F-statistic for the 
zombie flu regression is F  =  2035. The α  =  0.05 value for the 
F-distribution with one numerator degree of freedom and N −  2 =  7 
denominator degrees of freedom is Fcrit = 5.6. Since F = 2035 is greater 
than 5.6, then we reject the null hypothesis, concluding that the slope 
of the line is statistically significant.

Residual Analysis

Correlation and hypothesis tests are helpful, but I find it even more 
helpful to visualize the results. That’s why I’m a big fan of residual 
analysis. Residuals show you the statistical leftovers, the part of your 
data that isn’t included in the regression line. Formally, the residuals 
are just the observations, the actual y-values, minus the corresponding 
estimated y-values, or ŷ. Residual analysis is the process of inspecting 
these residuals with a scatterplot. Figure 9.4 plots the residuals for the 

Figure 9.4.  Residuals of zombie flu regression line.
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Figure 9.5.  Things to look for in regression residuals.

zombie flu data, the difference between the observed and the estimated 
number of postings during the first two months of 2009.

There are two things to look for in the residuals: outliers and non-
linearity. As indicated in Figure 9.3, outliers can adversely impact the 
slope of the line, particularly if they lie at one end of range of x-values. 
There appear to be no obvious outliers in Figure 9.4 and so this prob-
ably isn’t much of an issue for these data.

In a perfect world, the residuals should look completely random, 
without trends, without regular deviations from zero, and without runs 
of positive or negative values. In the real world, patterns sometimes 
appear. Patterns can be an indication of nonlinearity, meaning a linear 
regression line isn’t enough to properly fit the data, or correlation, 
meaning the residuals are not independent of one another. Figure 9.5 
shows patterns to look out for when examining residuals. When you 
see nonlinearity, you should try adding another x-variable or transform-
ing the one you do have, and details on this can be found in a good 
textbook on linear regression. Correlation impacts the R2, the tests 
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for significance, prediction, and all other diagnostics that apply to a 
regression line. Mild correlation usually isn’t a problem, but strong 
correlation can seriously mess with them, leading you astray on your 
predictions and your conclusions.

The residuals in Figure 9.4 do suggest a subtle pattern. They travel 
in twos: two above zero followed by two below zero and so on. This 
is an indication of weak correlation. The residuals are not independent 
of one another. However, this two-by-two pattern is obscured by the 
overall variation. So, it’s probably safe to trust the diagnostics and 
move on.

Predicting the Spread of Infection

After all this analysis, I’ve fit a line to the zombie flu-related postings 
and convinced myself it’s a good fit. But none of this answers my 
original question, “When did the zombie flu go viral?” It doesn’t look 
like it happened in the first two months of 2009, since the related post-
ings increased at a nice, steady, linear rate during that time. If not during 
January or February, when?

This is where prediction comes into play. Prediction is the ultimate 
goal of linear regression. It’s where you take any x-value and use the 
fitted regression line to predict what the corresponding y-value should 
be. There are two kinds of prediction: interpolation, predicting for 
x-values inside the range of your fitted data, and extrapolation, extend-
ing the prediction beyond the x-range you originally used to fit the 
line. Interpolation is generally regarded as a trustworthy process. In 
contrast, most professors will tell you to be careful about extrapolating 
a regression function beyond the initial x-range of your data. This is 
good advice. If your goal is to predict y-values from x-values, then 
you should fit the regression line with a range of x-values surrounding 
those you’re interested in. This gives you the most certainty in your 
predictions.

The goal of this study is not to predict y-values from x-values. The 
goal is simply to compare the predicted and actual number of zombie 
flu postings and determine when, if ever, the zombie flu went from a 
mere outbreak to a worldwide pandemic. In this case, extrapolation 
beyond the first two months of the year is exactly what I need. To do 
this, I need the standard error of the regression line (SE). The SE 
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measures the average deviation of the residuals, much in the way the 
standard deviation measures the average deviation of observations in a 
sample. The standard error estimates the variation of observed y-values 
around the regression line, and this value can be used to put a margin 
of error, or prediction interval, around a y-value. A prediction interval 
is similar to a confidence interval, but there’s an important difference 
between the two. Confidence intervals apply to population parameters, 
things like the mean, and they measure how much uncertainty is associ-
ated with a parameter estimate. Prediction intervals apply to individual 
observations, and they measure how much uncertainty is associated 
with a single, estimated value, ŷ.

Constructing prediction intervals can be a little messy, and so I’ll 
leave that to the more mathematical texts listed at the end of this book. 
But the general process is the same as a confidence interval: set up a 
1 − α interval probability around ŷ, then apply a sample distribution 
and some algebra to get the formula. For simple linear regression, the 
(1 − α)% prediction interval for y is given by the following, rather 
unattractive formula
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In other words, the true number of zombie flu postings in the first 70 
days of 2009 was, in all likelihood, between 408.7 and 461.1. 

Figure 9.6 extends the fitted regression line beyond the first two 
months of 2009, and plots the observed values on top of it. Figure 9.6a 
plots the total number of postings since January 1. Figure 9.6b gives 
us a closer look at the data by showing the residuals. The 95% predic-
tion interval bounds are plotted alongside the residuals for reference. 
Notice how the bounds are tightest toward the middle of the fitted 
x-values, increasing on either side. This reflects the increasing uncer-
tainty in the prediction as you move further from the center of the fitted 
x-range. It doesn’t necessarily mean the estimate is less accurate. It just 
means you have a higher margin of error as you leave the safe range 
of fitted values.

The big jump in the total number of postings in April suggests the 
zombie flu did indeed go viral after the April Fool’s Day prank news 
article; the number of posting jumped dramatically between April 20 
and April 27. But it wasn’t just the fake news article that did it. The 
idea had already started to spread before April 1. Figure 9.6b shows 
this. The actual number of postings left the range indicated by the 95% 
prediction interval by March 9, never to return. In other words, the 
disease was infecting the minds of Internet users for several weeks 
before the infamous prank. The April Fool’s Day story might have been 
the trigger that made the zombie flu go viral, but these data suggest it 
was well on its way to urban myth before the article was ever posted.

FROM RUMOR TO MYTH TO LEGEND

What can we take away from this chapter? First, never give your bank 
account information to somebody claiming to be a rich person from 
another country. Rich people don’t need your bank account. They have 
plenty of their own. Second, be careful what you do on the Internet. 
There are all sorts of people watching. I may be watching. And finally, 
if you’re thinking of posting a story about a strange disease that turns 
your skin inside out or makes you develop a taste for human pancreas, 
you may not be the first. There are thousands of rumors, myths, and 
legends out there, circulating the Internet at lightning speed. There 
might already be a group of Internet junkies talking about this very 
condition, spreading the idea and infecting the minds of millions. But 
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Figure 9.6.  From outbreak to pandemic: when the zombie flu went viral.
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even if your story isn’t the first, it just might be the trigger, the one 
account that makes the disease go viral.
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Addition rule  For mutually exclusive events, the probability of their 
union is the sum of their probabilities.

Analysis of variance (ANOVA)  A hypothesis test comparing the mean of 
more than two groups or populations.

Average  A measure of the central value in a set of observations. Also 
called a sample mean. Calculate by adding all the values and dividing by 
the number of values you have.

Bernoulli distribution  A probability distribution describing a random 
variable with two possible outcomes and success probability p.

Binomial distribution  A probability distribution describing the number of 
successes in a fixed set of independent trials.

Blocking  In a study, the process of selecting members of a sample to be 
as homogeneous or similar as possible in order to minimize the impact of 
potentially confounding factors.

Classical probability  A probability calculated by dividing the number of 
outcomes in your event by the total number of outcomes in the sample 
space.

Complement  The complement of an event is the set of all outcomes not 
in that event.

Complement rule  For any event, the probability of its complement is one 
minus the probability of the event itself.

Conditional probability  The probability of A given B, or P{A|B}. The 
probability event A will occur given you know event B has occurred.

Confounding factor  A variable that affects the effect, or outcome, of an 
experiment, making your conclusions ambiguous.
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Continuity correction  A 0.5 change to your x-value that adjusts for 
approximating a discrete distribution with a continuous distribution.

Controlled experiment  A data collection effort where variables or factors 
are tightly controlled.

Correlation  A relationship between two random variables or observations 
where the value of one affects the probability of the outcome of the  
other.

Counting rules  Formulas for counting the number of outcomes in an 
event or sample space.

Critical value  The x-value needed to achieve a specified probability.

Decision criterion  A rule for accepting or rejecting a hypothesis; usually a 
threshold above which the null hypothesis is rejected.

Degrees of freedom  The effective number of independent observations for 
a statistic, typically the number of observations minus one less the 
number of estimates needed.

Dependent variable  A variable whose value depends on some other 
variable.

Descriptive statistics  Values that summarize characteristics of a sample.

Diagnostics  Tools for assessing the quality and accuracy of a statistical 
model such as a regression line.

Effect  In a study, the outcome or phenomenon you’d like to measure.

Empirical probability  A probability value calculated from data and not 
just a theoretical model.

Empty set  An event with nothing in it. The intersection of two mutually 
exclusive events.

Estimate  A value calculated from a sample that estimates the 
corresponding value for an entire population.

Event  A specific set of outcomes in a random experiment.

Experimental design  The science of planning experiments to produce 
data that will lead to clear, valid conclusions.

Extrapolation  For a regression function, predicting y-values that lie 
outside the x-range of the original line.

Factor  Any variable that can impact the outcome of an experiment.

Frequency distribution  A list of numbers, one for each group or category 
in a qualitative dataset. The numbers count how many members of your 
dataset fall into each category.

Goodness-of-fit test  A hypothesis test that compares a frequency 
distribution to some model probability distribution, with the goal of 
judging whether or not the data fits the model.
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Histogram  A method for graphing the frequency distribution of 
quantitative data. The data are binned, the number of observations in each 
bin are counted, and a bar graph of the counts is constructed.

Independent events  Two events where the probability of one occurring is 
unaffected by whether or not the other occurs.

Independent trials  Successive random experiments where the outcomes 
are independent.

Independent variable  A variable or factor that does not depend on any 
other variable or factor.

Influential points  Outliers or other values that have a dramatic effect on 
the results of least squares regression.

Interpolation  For a regression function, predicting y-values that lie inside 
the x-range of the original line.

Intersection  The set of all outcomes appearing in two or more events at 
once.

Interval probability  The probability that some random variable will fall 
within a range of values.

Least squares regression  The process of estimating a regression 
parameter by minimizing the squared error, or the total squared deviation 
between the estimated y values and the observed y values.

Linear regression  A method for relating two variables, x and y, through a 
linear function, namely, y = mx + b.

Median  A measure of the central value in a group of observations. It’s the 
middle value.

Mode  The most popular category of a qualitative dataset.

Multiple comparison procedure  The process of testing for equality of 
means between many groups, two at a time.

Multiplication rule  For independent events, the probability of their 
intersection is the product of their probabilities.

Mutually exclusive events  Two events that cannot occur at the same time.

Normal distribution  A continuous probability distribution with a 
symmetric, bell-shaped curve.

Observational study  A data collection effort where none of the variables 
or factors are controlled.

Observations  Measurements, opinions, categories, or numerical values, 
anything that can make up a dataset.

Outliers  Extreme measurement values that can adversely impact the 
results of a statistical analysis.
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Paired data  Observations collected in pairs that are not independent of 
one another.

Parameter estimate  A value that approximates the parameter of a 
probability distribution.

Prediction  In linear regression, the process of predicting y-values from 
corresponding x-values.

Probability  The mathematics of uncertainty and randomness; a fraction, a 
value between zero and one that measures the likelihood a given event 
will occur.

Probability density function  The probability formulation for a continuous 
random variable.

Probability distribution  A mathematical equivalent to a histogram. A 
function describing the shape, character, and relative likelihoods of data 
that conform to it.

Probability distribution function  The probability formulation for a 
discrete random variable.

Qualitative data or observations  Observations that describe a category or 
type, such as hair color. This type of measurement cannot be sorted into a 
meaningful numerical order.

Quantitative data or observations  Numerical observations that can be 
sorted into a meaningful order.

Random experiment  A situation or trial where the outcome is not known 
beforehand.

Random sampling  Choosing members of a dataset at random.

Random variable  The foundation of a probability distribution. An 
algebraic description of the outcome of a random experiment.

Randomization  In a study, the process of randomly ordering your data 
collection.

Range  The largest minus the smallest measurement in a dataset.

Regression  A method for predicting a variable, y, from another variable, x, 
through a mathematical function.

Relative frequency distribution  A frequency distribution where the 
counts in each category are represented as fractions of the whole or, 
alternatively, percentages.

Residual analysis  Inspection of residuals to identify outliers and 
determine how well a regression line fits the individual y-values.

Residuals  Statistical leftovers; in a regression, the error, or the actual 
y-values minus the corresponding y-values predicted by the regression line.
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Sample space  The collection of all possible outcomes in a random 
experiment.

Sampling  The process of choosing which members of the population to 
include in a dataset for analysis.

Sampling with replacement  The process of successively drawing 
members of a population, replacing the members between draws.

Sampling without replacement  The process of successively drawing 
members of a population without replacing the ones you drew at each 
step.

Scatterplot  A plot of two variables against one another, a way to visualize 
relationships between two variables.

Standard deviation  The most common measure of variation, based on the 
mean squared deviation around the average.

Standard error  The standard deviation of an estimate, say, the sample 
mean.

Standard normal distribution  A special case of the normal distribution, 
where the mean is zero and the variance is one.

Statistically significant  A trend, pattern, or difference that is larger than 
you would expect based on random variation alone.

Test statistic  A value calculated from estimates of population parameters, 
and used to test hypotheses.

Type I error probability  For a hypothesis test, the probability of rejecting 
H0 when H0 is true.

Union  The union of two events is the set of all outcomes appearing in 
either one or both events.

Variation  Differences between the values of a dataset.

Venn diagram  A pictorial representation of outcomes and events in a 
sample space.
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